Autoscaling scientific workflows on the cloud by combining on-demand and spot instances
- Autores
- Monge Bosdari, David Antonio; Garí Núñez, Yisel; Mateos Diaz, Cristian Maximiliano; Garcia Garino, Carlos Gabriel
- Año de publicación
- 2017
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Autoscaling strategies achieve efficient and cheap executions of scientific workflows running in the cloud by determining appropriate type and amount of virtual machine instances to use while scheduling the tasks/data . Current strategies only consider on-demand instances ignoring the advantages of a mixed cloud infrastructure comprising also spot instances. Although the latter type of instances are subject to failures and therefore provide an unreliable infrastructure, they potentially offer significant cost and time improvements if used wisely. This paper discusses a novel autoscaling strategy with two features. First, it combines both types of instances to acquire a better cost-performance balance in the infrastructure. And second, it uses heuristic scheduling to deal with the unreliability of spot instances. Simulated experiments based on 4 scientific workflows showed substantial makespan and cost reductions of our strategy when compared with a reference strategy from the state of the art entitled Scaling First. These promising results represent a step towards new and better strategies for workflow autoscaling in the cloud.
Fil: Monge Bosdari, David Antonio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina. Universidad Nacional de Cuyo. Instituto para las Tecnologías de la Informacion y las Comunicaciones; Argentina
Fil: Garí Núñez, Yisel. Universidad Nacional de Cuyo. Instituto para las Tecnologías de la Informacion y las Comunicaciones; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina
Fil: Mateos Diaz, Cristian Maximiliano. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Instituto de Sistemas Tandil; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil; Argentina
Fil: Garcia Garino, Carlos Gabriel. Universidad Nacional de Cuyo. Facultad de Ingeniería; Argentina. Universidad Nacional de Cuyo. Instituto para las Tecnologías de la Informacion y las Comunicaciones; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina - Materia
-
Scientific Workflows
Cloud Computing
Autoscaling
Scheduling
Spot Instances - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/69858
Ver los metadatos del registro completo
id |
CONICETDig_9008f32504d2f24a941f5a14404c89cc |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/69858 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Autoscaling scientific workflows on the cloud by combining on-demand and spot instancesMonge Bosdari, David AntonioGarí Núñez, YiselMateos Diaz, Cristian MaximilianoGarcia Garino, Carlos GabrielScientific WorkflowsCloud ComputingAutoscalingSchedulingSpot Instanceshttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1Autoscaling strategies achieve efficient and cheap executions of scientific workflows running in the cloud by determining appropriate type and amount of virtual machine instances to use while scheduling the tasks/data . Current strategies only consider on-demand instances ignoring the advantages of a mixed cloud infrastructure comprising also spot instances. Although the latter type of instances are subject to failures and therefore provide an unreliable infrastructure, they potentially offer significant cost and time improvements if used wisely. This paper discusses a novel autoscaling strategy with two features. First, it combines both types of instances to acquire a better cost-performance balance in the infrastructure. And second, it uses heuristic scheduling to deal with the unreliability of spot instances. Simulated experiments based on 4 scientific workflows showed substantial makespan and cost reductions of our strategy when compared with a reference strategy from the state of the art entitled Scaling First. These promising results represent a step towards new and better strategies for workflow autoscaling in the cloud.Fil: Monge Bosdari, David Antonio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina. Universidad Nacional de Cuyo. Instituto para las Tecnologías de la Informacion y las Comunicaciones; ArgentinaFil: Garí Núñez, Yisel. Universidad Nacional de Cuyo. Instituto para las Tecnologías de la Informacion y las Comunicaciones; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; ArgentinaFil: Mateos Diaz, Cristian Maximiliano. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Instituto de Sistemas Tandil; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil; ArgentinaFil: Garcia Garino, Carlos Gabriel. Universidad Nacional de Cuyo. Facultad de Ingeniería; Argentina. Universidad Nacional de Cuyo. Instituto para las Tecnologías de la Informacion y las Comunicaciones; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaC R L Publishing Ltd2017-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/69858Monge Bosdari, David Antonio; Garí Núñez, Yisel; Mateos Diaz, Cristian Maximiliano; Garcia Garino, Carlos Gabriel; Autoscaling scientific workflows on the cloud by combining on-demand and spot instances; C R L Publishing Ltd; Computer Systems Science And Engineering; 32; 4; 2-2017; 1-160267-6192CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://crl-publishing.co.uk/csse-journal/info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:51:08Zoai:ri.conicet.gov.ar:11336/69858instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:51:08.81CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Autoscaling scientific workflows on the cloud by combining on-demand and spot instances |
title |
Autoscaling scientific workflows on the cloud by combining on-demand and spot instances |
spellingShingle |
Autoscaling scientific workflows on the cloud by combining on-demand and spot instances Monge Bosdari, David Antonio Scientific Workflows Cloud Computing Autoscaling Scheduling Spot Instances |
title_short |
Autoscaling scientific workflows on the cloud by combining on-demand and spot instances |
title_full |
Autoscaling scientific workflows on the cloud by combining on-demand and spot instances |
title_fullStr |
Autoscaling scientific workflows on the cloud by combining on-demand and spot instances |
title_full_unstemmed |
Autoscaling scientific workflows on the cloud by combining on-demand and spot instances |
title_sort |
Autoscaling scientific workflows on the cloud by combining on-demand and spot instances |
dc.creator.none.fl_str_mv |
Monge Bosdari, David Antonio Garí Núñez, Yisel Mateos Diaz, Cristian Maximiliano Garcia Garino, Carlos Gabriel |
author |
Monge Bosdari, David Antonio |
author_facet |
Monge Bosdari, David Antonio Garí Núñez, Yisel Mateos Diaz, Cristian Maximiliano Garcia Garino, Carlos Gabriel |
author_role |
author |
author2 |
Garí Núñez, Yisel Mateos Diaz, Cristian Maximiliano Garcia Garino, Carlos Gabriel |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
Scientific Workflows Cloud Computing Autoscaling Scheduling Spot Instances |
topic |
Scientific Workflows Cloud Computing Autoscaling Scheduling Spot Instances |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.2 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Autoscaling strategies achieve efficient and cheap executions of scientific workflows running in the cloud by determining appropriate type and amount of virtual machine instances to use while scheduling the tasks/data . Current strategies only consider on-demand instances ignoring the advantages of a mixed cloud infrastructure comprising also spot instances. Although the latter type of instances are subject to failures and therefore provide an unreliable infrastructure, they potentially offer significant cost and time improvements if used wisely. This paper discusses a novel autoscaling strategy with two features. First, it combines both types of instances to acquire a better cost-performance balance in the infrastructure. And second, it uses heuristic scheduling to deal with the unreliability of spot instances. Simulated experiments based on 4 scientific workflows showed substantial makespan and cost reductions of our strategy when compared with a reference strategy from the state of the art entitled Scaling First. These promising results represent a step towards new and better strategies for workflow autoscaling in the cloud. Fil: Monge Bosdari, David Antonio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina. Universidad Nacional de Cuyo. Instituto para las Tecnologías de la Informacion y las Comunicaciones; Argentina Fil: Garí Núñez, Yisel. Universidad Nacional de Cuyo. Instituto para las Tecnologías de la Informacion y las Comunicaciones; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina Fil: Mateos Diaz, Cristian Maximiliano. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Instituto de Sistemas Tandil; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil; Argentina Fil: Garcia Garino, Carlos Gabriel. Universidad Nacional de Cuyo. Facultad de Ingeniería; Argentina. Universidad Nacional de Cuyo. Instituto para las Tecnologías de la Informacion y las Comunicaciones; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina |
description |
Autoscaling strategies achieve efficient and cheap executions of scientific workflows running in the cloud by determining appropriate type and amount of virtual machine instances to use while scheduling the tasks/data . Current strategies only consider on-demand instances ignoring the advantages of a mixed cloud infrastructure comprising also spot instances. Although the latter type of instances are subject to failures and therefore provide an unreliable infrastructure, they potentially offer significant cost and time improvements if used wisely. This paper discusses a novel autoscaling strategy with two features. First, it combines both types of instances to acquire a better cost-performance balance in the infrastructure. And second, it uses heuristic scheduling to deal with the unreliability of spot instances. Simulated experiments based on 4 scientific workflows showed substantial makespan and cost reductions of our strategy when compared with a reference strategy from the state of the art entitled Scaling First. These promising results represent a step towards new and better strategies for workflow autoscaling in the cloud. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017-02 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/69858 Monge Bosdari, David Antonio; Garí Núñez, Yisel; Mateos Diaz, Cristian Maximiliano; Garcia Garino, Carlos Gabriel; Autoscaling scientific workflows on the cloud by combining on-demand and spot instances; C R L Publishing Ltd; Computer Systems Science And Engineering; 32; 4; 2-2017; 1-16 0267-6192 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/69858 |
identifier_str_mv |
Monge Bosdari, David Antonio; Garí Núñez, Yisel; Mateos Diaz, Cristian Maximiliano; Garcia Garino, Carlos Gabriel; Autoscaling scientific workflows on the cloud by combining on-demand and spot instances; C R L Publishing Ltd; Computer Systems Science And Engineering; 32; 4; 2-2017; 1-16 0267-6192 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://crl-publishing.co.uk/csse-journal/ |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
C R L Publishing Ltd |
publisher.none.fl_str_mv |
C R L Publishing Ltd |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269075995099136 |
score |
13.13397 |