An Empirical Comparison of Botnet Detection Methods

Autores
García, Sebastián; Grill, M.; Stiborek, J.; Zunino Suarez, Alejandro Octavio
Año de publicación
2014
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The results of botnet detection methods are usually presented without any comparison. Although it is generally accepted that more comparisons with third-party methods may help to improve the area, few papers could do it. Among the factors that prevent a comparison are the difficulties to share a dataset, the lack of a good dataset, the absence of a proper description of the methods and the lack of a comparison methodology. This paper compares the output of three different botnet detection methods by executing them over a new, real, labeled and large botnet dataset. This dataset includes botnet, normal and background traffic. The results of our two methods (BClus and CAMNEP) and BotHunter were compared using a methodology and a novel error metric designed for botnet detections methods. We conclude that comparing methods indeed helps to better estimate how good the methods are, to improve the algorithms, to build better datasets and to build a comparison methodology.
Fil: García, Sebastián. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Tandil. Instituto Superior de Ingenieria del Software; Argentina. Czech Technical University in Prague. Department of Computer Science and Engineering. Agents Technology Group; República Checa
Fil: Grill, M.. Czech Technical University in Prague. Department of Computer Science and Engineering. Agents Technology Group; República Checa
Fil: Stiborek, J.. Czech Technical University in Prague. Department of Computer Science and Engineering. Agents Technology Group; República Checa
Fil: Zunino Suarez, Alejandro Octavio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Tandil. Instituto Superior de Ingenieria del Software; Argentina
Materia
Botnet Detection
Malware Detection
Methods Comparison
Botnet Dataset
Anomaly Detection
Network Traffic
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/6772

id CONICETDig_2484e38119a96778258b10152235d1ef
oai_identifier_str oai:ri.conicet.gov.ar:11336/6772
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling An Empirical Comparison of Botnet Detection MethodsGarcía, SebastiánGrill, M.Stiborek, J.Zunino Suarez, Alejandro OctavioBotnet DetectionMalware DetectionMethods ComparisonBotnet DatasetAnomaly DetectionNetwork Traffichttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1The results of botnet detection methods are usually presented without any comparison. Although it is generally accepted that more comparisons with third-party methods may help to improve the area, few papers could do it. Among the factors that prevent a comparison are the difficulties to share a dataset, the lack of a good dataset, the absence of a proper description of the methods and the lack of a comparison methodology. This paper compares the output of three different botnet detection methods by executing them over a new, real, labeled and large botnet dataset. This dataset includes botnet, normal and background traffic. The results of our two methods (BClus and CAMNEP) and BotHunter were compared using a methodology and a novel error metric designed for botnet detections methods. We conclude that comparing methods indeed helps to better estimate how good the methods are, to improve the algorithms, to build better datasets and to build a comparison methodology.Fil: García, Sebastián. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Tandil. Instituto Superior de Ingenieria del Software; Argentina. Czech Technical University in Prague. Department of Computer Science and Engineering. Agents Technology Group; República ChecaFil: Grill, M.. Czech Technical University in Prague. Department of Computer Science and Engineering. Agents Technology Group; República ChecaFil: Stiborek, J.. Czech Technical University in Prague. Department of Computer Science and Engineering. Agents Technology Group; República ChecaFil: Zunino Suarez, Alejandro Octavio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Tandil. Instituto Superior de Ingenieria del Software; ArgentinaElsevier2014-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/6772García, Sebastián; Grill, M.; Stiborek, J.; Zunino Suarez, Alejandro Octavio; An Empirical Comparison of Botnet Detection Methods; Elsevier; Computers & Security; 45; 6-2014; 100-1230167-4048enginfo:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0167404814000923info:eu-repo/semantics/altIdentifier/doi/info:eu-repo/semantics/altIdentifier/doi/10.1016/j.cose.2014.05.011info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:15:17Zoai:ri.conicet.gov.ar:11336/6772instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:15:17.548CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv An Empirical Comparison of Botnet Detection Methods
title An Empirical Comparison of Botnet Detection Methods
spellingShingle An Empirical Comparison of Botnet Detection Methods
García, Sebastián
Botnet Detection
Malware Detection
Methods Comparison
Botnet Dataset
Anomaly Detection
Network Traffic
title_short An Empirical Comparison of Botnet Detection Methods
title_full An Empirical Comparison of Botnet Detection Methods
title_fullStr An Empirical Comparison of Botnet Detection Methods
title_full_unstemmed An Empirical Comparison of Botnet Detection Methods
title_sort An Empirical Comparison of Botnet Detection Methods
dc.creator.none.fl_str_mv García, Sebastián
Grill, M.
Stiborek, J.
Zunino Suarez, Alejandro Octavio
author García, Sebastián
author_facet García, Sebastián
Grill, M.
Stiborek, J.
Zunino Suarez, Alejandro Octavio
author_role author
author2 Grill, M.
Stiborek, J.
Zunino Suarez, Alejandro Octavio
author2_role author
author
author
dc.subject.none.fl_str_mv Botnet Detection
Malware Detection
Methods Comparison
Botnet Dataset
Anomaly Detection
Network Traffic
topic Botnet Detection
Malware Detection
Methods Comparison
Botnet Dataset
Anomaly Detection
Network Traffic
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.2
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv The results of botnet detection methods are usually presented without any comparison. Although it is generally accepted that more comparisons with third-party methods may help to improve the area, few papers could do it. Among the factors that prevent a comparison are the difficulties to share a dataset, the lack of a good dataset, the absence of a proper description of the methods and the lack of a comparison methodology. This paper compares the output of three different botnet detection methods by executing them over a new, real, labeled and large botnet dataset. This dataset includes botnet, normal and background traffic. The results of our two methods (BClus and CAMNEP) and BotHunter were compared using a methodology and a novel error metric designed for botnet detections methods. We conclude that comparing methods indeed helps to better estimate how good the methods are, to improve the algorithms, to build better datasets and to build a comparison methodology.
Fil: García, Sebastián. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Tandil. Instituto Superior de Ingenieria del Software; Argentina. Czech Technical University in Prague. Department of Computer Science and Engineering. Agents Technology Group; República Checa
Fil: Grill, M.. Czech Technical University in Prague. Department of Computer Science and Engineering. Agents Technology Group; República Checa
Fil: Stiborek, J.. Czech Technical University in Prague. Department of Computer Science and Engineering. Agents Technology Group; República Checa
Fil: Zunino Suarez, Alejandro Octavio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Tandil. Instituto Superior de Ingenieria del Software; Argentina
description The results of botnet detection methods are usually presented without any comparison. Although it is generally accepted that more comparisons with third-party methods may help to improve the area, few papers could do it. Among the factors that prevent a comparison are the difficulties to share a dataset, the lack of a good dataset, the absence of a proper description of the methods and the lack of a comparison methodology. This paper compares the output of three different botnet detection methods by executing them over a new, real, labeled and large botnet dataset. This dataset includes botnet, normal and background traffic. The results of our two methods (BClus and CAMNEP) and BotHunter were compared using a methodology and a novel error metric designed for botnet detections methods. We conclude that comparing methods indeed helps to better estimate how good the methods are, to improve the algorithms, to build better datasets and to build a comparison methodology.
publishDate 2014
dc.date.none.fl_str_mv 2014-06
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/6772
García, Sebastián; Grill, M.; Stiborek, J.; Zunino Suarez, Alejandro Octavio; An Empirical Comparison of Botnet Detection Methods; Elsevier; Computers & Security; 45; 6-2014; 100-123
0167-4048
url http://hdl.handle.net/11336/6772
identifier_str_mv García, Sebastián; Grill, M.; Stiborek, J.; Zunino Suarez, Alejandro Octavio; An Empirical Comparison of Botnet Detection Methods; Elsevier; Computers & Security; 45; 6-2014; 100-123
0167-4048
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0167404814000923
info:eu-repo/semantics/altIdentifier/doi/
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.cose.2014.05.011
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier
publisher.none.fl_str_mv Elsevier
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614087840890880
score 13.070432