On the analytic structure of the H∞ maximal ideal space

Autores
Suarez, Fernando Daniel
Año de publicación
2001
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We characterize the algebra H∞ ◦L_m, where m is a point of the maximal ideal space of H∞ with nontrivial Gleason part P(m) and L_m : D→P(m) is the coordinate Hoffman map. In particular, it is shown that for any continuous function f : P(m)→C with f ◦L_m ∈ H∞ there exists F ∈ H∞ such that F|_P(m) = f.
Fil: Suarez, Fernando Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina
Materia
CLEASON PARTS
ANALYTIC EXTENSION
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/111555

id CONICETDig_0ffc3ded6138d21925f97b5bdc4c5ebb
oai_identifier_str oai:ri.conicet.gov.ar:11336/111555
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling On the analytic structure of the H∞ maximal ideal spaceSuarez, Fernando DanielCLEASON PARTSANALYTIC EXTENSIONhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We characterize the algebra H∞ ◦L_m, where m is a point of the maximal ideal space of H∞ with nontrivial Gleason part P(m) and L_m : D→P(m) is the coordinate Hoffman map. In particular, it is shown that for any continuous function f : P(m)→C with f ◦L_m ∈ H∞ there exists F ∈ H∞ such that F|_P(m) = f.Fil: Suarez, Fernando Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; ArgentinaNova Science Publishers2001-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/111555Suarez, Fernando Daniel; On the analytic structure of the H∞ maximal ideal space; Nova Science Publishers; International Journal of Mathematics, Game Theory, and Algebra; 11; 1; 12-2001; 15-321060-9881CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://www.novapublishers.org/catalog/product_info.php?products_id=8633info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-22T11:06:45Zoai:ri.conicet.gov.ar:11336/111555instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-22 11:06:46.032CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv On the analytic structure of the H∞ maximal ideal space
title On the analytic structure of the H∞ maximal ideal space
spellingShingle On the analytic structure of the H∞ maximal ideal space
Suarez, Fernando Daniel
CLEASON PARTS
ANALYTIC EXTENSION
title_short On the analytic structure of the H∞ maximal ideal space
title_full On the analytic structure of the H∞ maximal ideal space
title_fullStr On the analytic structure of the H∞ maximal ideal space
title_full_unstemmed On the analytic structure of the H∞ maximal ideal space
title_sort On the analytic structure of the H∞ maximal ideal space
dc.creator.none.fl_str_mv Suarez, Fernando Daniel
author Suarez, Fernando Daniel
author_facet Suarez, Fernando Daniel
author_role author
dc.subject.none.fl_str_mv CLEASON PARTS
ANALYTIC EXTENSION
topic CLEASON PARTS
ANALYTIC EXTENSION
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We characterize the algebra H∞ ◦L_m, where m is a point of the maximal ideal space of H∞ with nontrivial Gleason part P(m) and L_m : D→P(m) is the coordinate Hoffman map. In particular, it is shown that for any continuous function f : P(m)→C with f ◦L_m ∈ H∞ there exists F ∈ H∞ such that F|_P(m) = f.
Fil: Suarez, Fernando Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina
description We characterize the algebra H∞ ◦L_m, where m is a point of the maximal ideal space of H∞ with nontrivial Gleason part P(m) and L_m : D→P(m) is the coordinate Hoffman map. In particular, it is shown that for any continuous function f : P(m)→C with f ◦L_m ∈ H∞ there exists F ∈ H∞ such that F|_P(m) = f.
publishDate 2001
dc.date.none.fl_str_mv 2001-12
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/111555
Suarez, Fernando Daniel; On the analytic structure of the H∞ maximal ideal space; Nova Science Publishers; International Journal of Mathematics, Game Theory, and Algebra; 11; 1; 12-2001; 15-32
1060-9881
CONICET Digital
CONICET
url http://hdl.handle.net/11336/111555
identifier_str_mv Suarez, Fernando Daniel; On the analytic structure of the H∞ maximal ideal space; Nova Science Publishers; International Journal of Mathematics, Game Theory, and Algebra; 11; 1; 12-2001; 15-32
1060-9881
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://www.novapublishers.org/catalog/product_info.php?products_id=8633
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Nova Science Publishers
publisher.none.fl_str_mv Nova Science Publishers
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846781372038905856
score 12.982451