Blankets Joint Posterior score for learning Markov network structures

Autores
Schluter, Federico Enrique Adolfo; Strappa Figueroa, Yanela Daiana; Milone, Diego Humberto; Bromberg, Facundo
Año de publicación
2018
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Markov networks are extensively used to model complex sequential, spatial, and relational interactions in a wide range of fields. By learning the Markov network independence structure of a domain, more accurate joint probability distributions can be obtained for inference tasks or, more directly, for interpreting the most significant relations among the variables. Recently, several researchers have investigated techniques for automatically learning the structure from data by obtaining the probabilistic maximum-a-posteriori structure given the available data. However, all the approximations proposed decompose the posterior of the whole structure into local sub-problems, by assuming that the posteriors of the Markov blankets of all the variables are mutually independent. In this work, we propose a scoring function for relaxing such assumption. The Blankets Joint Posterior score computes the joint posterior of structures as a joint distribution of the collection of its Markov blankets. Essentially, the whole posterior is obtained by computing the posterior of the blanket of each variable as a conditional distribution that takes into account information from other blankets in the network. We show in our experimental results that the proposed approximation can improve the sample complexity of state-of-the-art competitors when learning complex networks, where the independence assumption between blanket variables is clearly incorrect.
Fil: Schluter, Federico Enrique Adolfo. Universidad Tecnológica Nacional. Facultad Regional de Mendoza; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Strappa Figueroa, Yanela Daiana. Universidad Tecnológica Nacional. Facultad Regional de Mendoza; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Milone, Diego Humberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; Argentina
Fil: Bromberg, Facundo. Universidad Tecnológica Nacional. Facultad Regional de Mendoza; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Materia
BLANKETS POSTERIOR
IRREGULAR STRUCTURES
MARKOV NETWORK
SCORING FUNCTION
STRUCTURE LEARNING
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/90382

id CONICETDig_23c300f2cdbb3b0f3fa6fbc8b6e4df9f
oai_identifier_str oai:ri.conicet.gov.ar:11336/90382
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Blankets Joint Posterior score for learning Markov network structuresSchluter, Federico Enrique AdolfoStrappa Figueroa, Yanela DaianaMilone, Diego HumbertoBromberg, FacundoBLANKETS POSTERIORIRREGULAR STRUCTURESMARKOV NETWORKSCORING FUNCTIONSTRUCTURE LEARNINGhttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1Markov networks are extensively used to model complex sequential, spatial, and relational interactions in a wide range of fields. By learning the Markov network independence structure of a domain, more accurate joint probability distributions can be obtained for inference tasks or, more directly, for interpreting the most significant relations among the variables. Recently, several researchers have investigated techniques for automatically learning the structure from data by obtaining the probabilistic maximum-a-posteriori structure given the available data. However, all the approximations proposed decompose the posterior of the whole structure into local sub-problems, by assuming that the posteriors of the Markov blankets of all the variables are mutually independent. In this work, we propose a scoring function for relaxing such assumption. The Blankets Joint Posterior score computes the joint posterior of structures as a joint distribution of the collection of its Markov blankets. Essentially, the whole posterior is obtained by computing the posterior of the blanket of each variable as a conditional distribution that takes into account information from other blankets in the network. We show in our experimental results that the proposed approximation can improve the sample complexity of state-of-the-art competitors when learning complex networks, where the independence assumption between blanket variables is clearly incorrect.Fil: Schluter, Federico Enrique Adolfo. Universidad Tecnológica Nacional. Facultad Regional de Mendoza; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Strappa Figueroa, Yanela Daiana. Universidad Tecnológica Nacional. Facultad Regional de Mendoza; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Milone, Diego Humberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; ArgentinaFil: Bromberg, Facundo. Universidad Tecnológica Nacional. Facultad Regional de Mendoza; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaElsevier Science Inc2018-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/90382Schluter, Federico Enrique Adolfo; Strappa Figueroa, Yanela Daiana; Milone, Diego Humberto; Bromberg, Facundo; Blankets Joint Posterior score for learning Markov network structures; Elsevier Science Inc; International Journal Of Approximate Reasoning; 92; 1-2018; 295-3200888-613XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.ijar.2017.10.018info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0888613X17302189info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:39:21Zoai:ri.conicet.gov.ar:11336/90382instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:39:21.624CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Blankets Joint Posterior score for learning Markov network structures
title Blankets Joint Posterior score for learning Markov network structures
spellingShingle Blankets Joint Posterior score for learning Markov network structures
Schluter, Federico Enrique Adolfo
BLANKETS POSTERIOR
IRREGULAR STRUCTURES
MARKOV NETWORK
SCORING FUNCTION
STRUCTURE LEARNING
title_short Blankets Joint Posterior score for learning Markov network structures
title_full Blankets Joint Posterior score for learning Markov network structures
title_fullStr Blankets Joint Posterior score for learning Markov network structures
title_full_unstemmed Blankets Joint Posterior score for learning Markov network structures
title_sort Blankets Joint Posterior score for learning Markov network structures
dc.creator.none.fl_str_mv Schluter, Federico Enrique Adolfo
Strappa Figueroa, Yanela Daiana
Milone, Diego Humberto
Bromberg, Facundo
author Schluter, Federico Enrique Adolfo
author_facet Schluter, Federico Enrique Adolfo
Strappa Figueroa, Yanela Daiana
Milone, Diego Humberto
Bromberg, Facundo
author_role author
author2 Strappa Figueroa, Yanela Daiana
Milone, Diego Humberto
Bromberg, Facundo
author2_role author
author
author
dc.subject.none.fl_str_mv BLANKETS POSTERIOR
IRREGULAR STRUCTURES
MARKOV NETWORK
SCORING FUNCTION
STRUCTURE LEARNING
topic BLANKETS POSTERIOR
IRREGULAR STRUCTURES
MARKOV NETWORK
SCORING FUNCTION
STRUCTURE LEARNING
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.2
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Markov networks are extensively used to model complex sequential, spatial, and relational interactions in a wide range of fields. By learning the Markov network independence structure of a domain, more accurate joint probability distributions can be obtained for inference tasks or, more directly, for interpreting the most significant relations among the variables. Recently, several researchers have investigated techniques for automatically learning the structure from data by obtaining the probabilistic maximum-a-posteriori structure given the available data. However, all the approximations proposed decompose the posterior of the whole structure into local sub-problems, by assuming that the posteriors of the Markov blankets of all the variables are mutually independent. In this work, we propose a scoring function for relaxing such assumption. The Blankets Joint Posterior score computes the joint posterior of structures as a joint distribution of the collection of its Markov blankets. Essentially, the whole posterior is obtained by computing the posterior of the blanket of each variable as a conditional distribution that takes into account information from other blankets in the network. We show in our experimental results that the proposed approximation can improve the sample complexity of state-of-the-art competitors when learning complex networks, where the independence assumption between blanket variables is clearly incorrect.
Fil: Schluter, Federico Enrique Adolfo. Universidad Tecnológica Nacional. Facultad Regional de Mendoza; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Strappa Figueroa, Yanela Daiana. Universidad Tecnológica Nacional. Facultad Regional de Mendoza; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Milone, Diego Humberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; Argentina
Fil: Bromberg, Facundo. Universidad Tecnológica Nacional. Facultad Regional de Mendoza; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
description Markov networks are extensively used to model complex sequential, spatial, and relational interactions in a wide range of fields. By learning the Markov network independence structure of a domain, more accurate joint probability distributions can be obtained for inference tasks or, more directly, for interpreting the most significant relations among the variables. Recently, several researchers have investigated techniques for automatically learning the structure from data by obtaining the probabilistic maximum-a-posteriori structure given the available data. However, all the approximations proposed decompose the posterior of the whole structure into local sub-problems, by assuming that the posteriors of the Markov blankets of all the variables are mutually independent. In this work, we propose a scoring function for relaxing such assumption. The Blankets Joint Posterior score computes the joint posterior of structures as a joint distribution of the collection of its Markov blankets. Essentially, the whole posterior is obtained by computing the posterior of the blanket of each variable as a conditional distribution that takes into account information from other blankets in the network. We show in our experimental results that the proposed approximation can improve the sample complexity of state-of-the-art competitors when learning complex networks, where the independence assumption between blanket variables is clearly incorrect.
publishDate 2018
dc.date.none.fl_str_mv 2018-01
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/90382
Schluter, Federico Enrique Adolfo; Strappa Figueroa, Yanela Daiana; Milone, Diego Humberto; Bromberg, Facundo; Blankets Joint Posterior score for learning Markov network structures; Elsevier Science Inc; International Journal Of Approximate Reasoning; 92; 1-2018; 295-320
0888-613X
CONICET Digital
CONICET
url http://hdl.handle.net/11336/90382
identifier_str_mv Schluter, Federico Enrique Adolfo; Strappa Figueroa, Yanela Daiana; Milone, Diego Humberto; Bromberg, Facundo; Blankets Joint Posterior score for learning Markov network structures; Elsevier Science Inc; International Journal Of Approximate Reasoning; 92; 1-2018; 295-320
0888-613X
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1016/j.ijar.2017.10.018
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0888613X17302189
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier Science Inc
publisher.none.fl_str_mv Elsevier Science Inc
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613245376135168
score 13.070432