Assessment of microbial community function and structure in soil microcosms exposed to glyphosate

Autores
Zabaloy, Maria Celina; Gomez, Elena del Valle; Garland, Jay L.; Gomez, Marisa Anahi
Año de publicación
2012
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The large scale use of glyphosate to control weeds in transgenic crops and in no-till management systems emphasizes the need to understand its effects on soil microbial communities. The herbicide may change the soil environment due to toxicity to soil microorganisms and through the influx of carbon (C), phosphorus (P) and nitrogen (N) from the cometabolic decay of glyphosate. This study evaluated both the potential effects of glyphosate treatments on microbial community structure and function in laboratory incubation of soils. Soil from two sites in the Pampa region of Argentina (Vertic Argiudoll from Zavalla, ZAV; Petrocalcic Paleustoll from Coronel Dorrego, DOR), with long exposure to glyphosate were used in soil microcosms amended with different doses of herbicide (0, 15 and 150mgkg -1) and incubated for 7 days. Soil from a natural grassland at the ZAV site was used as a reference soil. Community respiration in response to different C and nutrient (N and P) sources, including glyphosate, were assessed using an O 2 consumption-based assay in microtiter plates. Microbial community structure was analyzed using quantitative PCR (qPCR) to estimate the bacterial abundance and terminal restriction fragment length polymorphism (T-RFLP) to investigate the structure of the bacterial community. Glyphosate addition to the microcosms had minimal effects on both structural and functional measures of the microbial community. The addition of a high dose of glyphosate to soil microcosms from one agricultural site significantly reduced N limitation, suggesting that glyphosate breakdown provided N for microbial activity. However, the immediate respiratory response of the reference and chronically exposed soils to glyphosate was distinctive. Glyphosate increased respiration in the reference grassland soil, potentially due to a stress response of glyphosate sensitive species, while it depressed respiration in the chronically exposed soil, probably as a result of selection for organisms acclimated for rapid assimilation of substrates from the cometabolic decay of the molecule. These results suggest that longer term studies involving repeated addition of glyphosate to previously unexposed soils are needed to understand important shifts in community metabolism caused by the typical agricultural use of this herbicide.
Fil: Zabaloy, Maria Celina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Centro de Recursos Naturales Renovables de la Zona Semiárida. Universidad Nacional del Sur. Centro de Recursos Naturales Renovables de la Zona Semiárida; Argentina
Fil: Gomez, Elena del Valle. Universidad Nacional de Rosario. Facultad de Ciencias Agrarias; Argentina
Fil: Garland, Jay L.. United States Environmental Protection Agency; Estados Unidos. Kennedy Space Center. Dynamac Corporation; Estados Unidos
Fil: Gomez, Marisa Anahi. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Centro de Recursos Naturales Renovables de la Zona Semiárida. Universidad Nacional del Sur. Centro de Recursos Naturales Renovables de la Zona Semiárida; Argentina
Materia
Community-Level Physiological Profiling
Glyphosate Toxicity
Quantitative Pcr
Soil Respiration
T-Rflp
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/76596

id CONICETDig_21fdda877721a22c46955cbc524e18c4
oai_identifier_str oai:ri.conicet.gov.ar:11336/76596
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Assessment of microbial community function and structure in soil microcosms exposed to glyphosateZabaloy, Maria CelinaGomez, Elena del ValleGarland, Jay L.Gomez, Marisa AnahiCommunity-Level Physiological ProfilingGlyphosate ToxicityQuantitative PcrSoil RespirationT-Rflphttps://purl.org/becyt/ford/4.1https://purl.org/becyt/ford/4The large scale use of glyphosate to control weeds in transgenic crops and in no-till management systems emphasizes the need to understand its effects on soil microbial communities. The herbicide may change the soil environment due to toxicity to soil microorganisms and through the influx of carbon (C), phosphorus (P) and nitrogen (N) from the cometabolic decay of glyphosate. This study evaluated both the potential effects of glyphosate treatments on microbial community structure and function in laboratory incubation of soils. Soil from two sites in the Pampa region of Argentina (Vertic Argiudoll from Zavalla, ZAV; Petrocalcic Paleustoll from Coronel Dorrego, DOR), with long exposure to glyphosate were used in soil microcosms amended with different doses of herbicide (0, 15 and 150mgkg -1) and incubated for 7 days. Soil from a natural grassland at the ZAV site was used as a reference soil. Community respiration in response to different C and nutrient (N and P) sources, including glyphosate, were assessed using an O 2 consumption-based assay in microtiter plates. Microbial community structure was analyzed using quantitative PCR (qPCR) to estimate the bacterial abundance and terminal restriction fragment length polymorphism (T-RFLP) to investigate the structure of the bacterial community. Glyphosate addition to the microcosms had minimal effects on both structural and functional measures of the microbial community. The addition of a high dose of glyphosate to soil microcosms from one agricultural site significantly reduced N limitation, suggesting that glyphosate breakdown provided N for microbial activity. However, the immediate respiratory response of the reference and chronically exposed soils to glyphosate was distinctive. Glyphosate increased respiration in the reference grassland soil, potentially due to a stress response of glyphosate sensitive species, while it depressed respiration in the chronically exposed soil, probably as a result of selection for organisms acclimated for rapid assimilation of substrates from the cometabolic decay of the molecule. These results suggest that longer term studies involving repeated addition of glyphosate to previously unexposed soils are needed to understand important shifts in community metabolism caused by the typical agricultural use of this herbicide.Fil: Zabaloy, Maria Celina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Centro de Recursos Naturales Renovables de la Zona Semiárida. Universidad Nacional del Sur. Centro de Recursos Naturales Renovables de la Zona Semiárida; ArgentinaFil: Gomez, Elena del Valle. Universidad Nacional de Rosario. Facultad de Ciencias Agrarias; ArgentinaFil: Garland, Jay L.. United States Environmental Protection Agency; Estados Unidos. Kennedy Space Center. Dynamac Corporation; Estados UnidosFil: Gomez, Marisa Anahi. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Centro de Recursos Naturales Renovables de la Zona Semiárida. Universidad Nacional del Sur. Centro de Recursos Naturales Renovables de la Zona Semiárida; ArgentinaElsevier Science2012-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/76596Zabaloy, Maria Celina; Gomez, Elena del Valle; Garland, Jay L.; Gomez, Marisa Anahi; Assessment of microbial community function and structure in soil microcosms exposed to glyphosate; Elsevier Science; Applied Soil Ecology; 61; 10-2012; 333-3390929-1393CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0929139311003258info:eu-repo/semantics/altIdentifier/doi/10.1016/j.apsoil.2011.12.004info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:47:11Zoai:ri.conicet.gov.ar:11336/76596instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:47:11.441CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Assessment of microbial community function and structure in soil microcosms exposed to glyphosate
title Assessment of microbial community function and structure in soil microcosms exposed to glyphosate
spellingShingle Assessment of microbial community function and structure in soil microcosms exposed to glyphosate
Zabaloy, Maria Celina
Community-Level Physiological Profiling
Glyphosate Toxicity
Quantitative Pcr
Soil Respiration
T-Rflp
title_short Assessment of microbial community function and structure in soil microcosms exposed to glyphosate
title_full Assessment of microbial community function and structure in soil microcosms exposed to glyphosate
title_fullStr Assessment of microbial community function and structure in soil microcosms exposed to glyphosate
title_full_unstemmed Assessment of microbial community function and structure in soil microcosms exposed to glyphosate
title_sort Assessment of microbial community function and structure in soil microcosms exposed to glyphosate
dc.creator.none.fl_str_mv Zabaloy, Maria Celina
Gomez, Elena del Valle
Garland, Jay L.
Gomez, Marisa Anahi
author Zabaloy, Maria Celina
author_facet Zabaloy, Maria Celina
Gomez, Elena del Valle
Garland, Jay L.
Gomez, Marisa Anahi
author_role author
author2 Gomez, Elena del Valle
Garland, Jay L.
Gomez, Marisa Anahi
author2_role author
author
author
dc.subject.none.fl_str_mv Community-Level Physiological Profiling
Glyphosate Toxicity
Quantitative Pcr
Soil Respiration
T-Rflp
topic Community-Level Physiological Profiling
Glyphosate Toxicity
Quantitative Pcr
Soil Respiration
T-Rflp
purl_subject.fl_str_mv https://purl.org/becyt/ford/4.1
https://purl.org/becyt/ford/4
dc.description.none.fl_txt_mv The large scale use of glyphosate to control weeds in transgenic crops and in no-till management systems emphasizes the need to understand its effects on soil microbial communities. The herbicide may change the soil environment due to toxicity to soil microorganisms and through the influx of carbon (C), phosphorus (P) and nitrogen (N) from the cometabolic decay of glyphosate. This study evaluated both the potential effects of glyphosate treatments on microbial community structure and function in laboratory incubation of soils. Soil from two sites in the Pampa region of Argentina (Vertic Argiudoll from Zavalla, ZAV; Petrocalcic Paleustoll from Coronel Dorrego, DOR), with long exposure to glyphosate were used in soil microcosms amended with different doses of herbicide (0, 15 and 150mgkg -1) and incubated for 7 days. Soil from a natural grassland at the ZAV site was used as a reference soil. Community respiration in response to different C and nutrient (N and P) sources, including glyphosate, were assessed using an O 2 consumption-based assay in microtiter plates. Microbial community structure was analyzed using quantitative PCR (qPCR) to estimate the bacterial abundance and terminal restriction fragment length polymorphism (T-RFLP) to investigate the structure of the bacterial community. Glyphosate addition to the microcosms had minimal effects on both structural and functional measures of the microbial community. The addition of a high dose of glyphosate to soil microcosms from one agricultural site significantly reduced N limitation, suggesting that glyphosate breakdown provided N for microbial activity. However, the immediate respiratory response of the reference and chronically exposed soils to glyphosate was distinctive. Glyphosate increased respiration in the reference grassland soil, potentially due to a stress response of glyphosate sensitive species, while it depressed respiration in the chronically exposed soil, probably as a result of selection for organisms acclimated for rapid assimilation of substrates from the cometabolic decay of the molecule. These results suggest that longer term studies involving repeated addition of glyphosate to previously unexposed soils are needed to understand important shifts in community metabolism caused by the typical agricultural use of this herbicide.
Fil: Zabaloy, Maria Celina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Centro de Recursos Naturales Renovables de la Zona Semiárida. Universidad Nacional del Sur. Centro de Recursos Naturales Renovables de la Zona Semiárida; Argentina
Fil: Gomez, Elena del Valle. Universidad Nacional de Rosario. Facultad de Ciencias Agrarias; Argentina
Fil: Garland, Jay L.. United States Environmental Protection Agency; Estados Unidos. Kennedy Space Center. Dynamac Corporation; Estados Unidos
Fil: Gomez, Marisa Anahi. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Centro de Recursos Naturales Renovables de la Zona Semiárida. Universidad Nacional del Sur. Centro de Recursos Naturales Renovables de la Zona Semiárida; Argentina
description The large scale use of glyphosate to control weeds in transgenic crops and in no-till management systems emphasizes the need to understand its effects on soil microbial communities. The herbicide may change the soil environment due to toxicity to soil microorganisms and through the influx of carbon (C), phosphorus (P) and nitrogen (N) from the cometabolic decay of glyphosate. This study evaluated both the potential effects of glyphosate treatments on microbial community structure and function in laboratory incubation of soils. Soil from two sites in the Pampa region of Argentina (Vertic Argiudoll from Zavalla, ZAV; Petrocalcic Paleustoll from Coronel Dorrego, DOR), with long exposure to glyphosate were used in soil microcosms amended with different doses of herbicide (0, 15 and 150mgkg -1) and incubated for 7 days. Soil from a natural grassland at the ZAV site was used as a reference soil. Community respiration in response to different C and nutrient (N and P) sources, including glyphosate, were assessed using an O 2 consumption-based assay in microtiter plates. Microbial community structure was analyzed using quantitative PCR (qPCR) to estimate the bacterial abundance and terminal restriction fragment length polymorphism (T-RFLP) to investigate the structure of the bacterial community. Glyphosate addition to the microcosms had minimal effects on both structural and functional measures of the microbial community. The addition of a high dose of glyphosate to soil microcosms from one agricultural site significantly reduced N limitation, suggesting that glyphosate breakdown provided N for microbial activity. However, the immediate respiratory response of the reference and chronically exposed soils to glyphosate was distinctive. Glyphosate increased respiration in the reference grassland soil, potentially due to a stress response of glyphosate sensitive species, while it depressed respiration in the chronically exposed soil, probably as a result of selection for organisms acclimated for rapid assimilation of substrates from the cometabolic decay of the molecule. These results suggest that longer term studies involving repeated addition of glyphosate to previously unexposed soils are needed to understand important shifts in community metabolism caused by the typical agricultural use of this herbicide.
publishDate 2012
dc.date.none.fl_str_mv 2012-10
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/76596
Zabaloy, Maria Celina; Gomez, Elena del Valle; Garland, Jay L.; Gomez, Marisa Anahi; Assessment of microbial community function and structure in soil microcosms exposed to glyphosate; Elsevier Science; Applied Soil Ecology; 61; 10-2012; 333-339
0929-1393
CONICET Digital
CONICET
url http://hdl.handle.net/11336/76596
identifier_str_mv Zabaloy, Maria Celina; Gomez, Elena del Valle; Garland, Jay L.; Gomez, Marisa Anahi; Assessment of microbial community function and structure in soil microcosms exposed to glyphosate; Elsevier Science; Applied Soil Ecology; 61; 10-2012; 333-339
0929-1393
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0929139311003258
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.apsoil.2011.12.004
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier Science
publisher.none.fl_str_mv Elsevier Science
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613470843043840
score 13.070432