Organic waste amendment effects on soil microbial activity in a corn-rye rotation: Application of a new approach to community-level physiological profiling

Autores
Garland, J. L.; Mackowiak, C. L.; Zabaloy, Maria Celina
Año de publicación
2010
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Organic fertilizers provide long-term benefits to agronomic soils, but sometimes cause short-term reductions in crop yield due to microbially mediated nitrogen (N) immobilization. A simple, rapid method to assess the integrated use of both, carbon (C) and N by soil microbial communities will be a useful monitoring tool in production agriculture. The present study evaluated a new platform for performing community-level physiological profiles (CLPP) using fluorescent-based detection of O2 consumption by soil slurries within microtiter plates. Response of a spodic Florida soil to 3 organic fertilizer amendment treatments; (1) control with no organic amendment, (2) pelletized class A?A municipal biosolids amendment, and (3) fresh dairy waste solids amendment was measured in soils taken from a corn?rye crop rotation. The CLPP assay was used to assess endogenous and substrate induced (∼75 μg C as acetate, casein, coumaric acid, mannose, or asparagine g−1 soil) respiration, with and without assay N additions (8 μg N-NH4 g−1 soil). Endogenous and substrate-induced respiration were generally greater in the dairy waste-amended soils, as quantified by a reduced lag period and greater response peak. Stimulatory effects from biosolid-amended soils were less extensive and consistent. The degree of N limitation on microbial activity was determined by comparing the response peak with and without N amendment. This difference in response (Ndiff) was greatest for all treatments during the rye exponential growth phase (prior to heading), when extractable soil NH4-N and NO3-N concentrations were lowest (i.e., < 10 mg kg−1). The dairy waste treated soils had greater Ndiff values during the rye crop as compared to the other treatments, particularly for endogenous respiration and mannose-induced respiration. Ndiff was low in all treatments during the corn crop, where extractable soil NH4-N + NO3-N remained at or above 20 mg N kg−1. Plant yield data coincided with our estimates of N-limited microbial activity, with less mid-season rye biomass under dairy waste and no yield response with corn. Overall, these data indicate that this new method allows for a rapid, ecologically relevant evaluation of organic amendment impacts on microbial soil respiration and thereby plant yield response. Further characterization and interpretation of the variation in microbial respiration among specific C substrates and the relative impact of N amendments (i.e., Ndiff), will provide insight to C and N cycling in soils receiving organic N inputs.
Fil: Garland, J. L.. Dynamic Corporation. Kennedy Space Center; Estados Unidos
Fil: Mackowiak, C. L.. University Of Florida. Florida Museum Of History; Estados Unidos
Fil: Zabaloy, Maria Celina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Centro de Recursos Naturales Renovables de la Zona Semiarida. Universidad Nacional del Sur. Centro de Recursos Naturales Renovables de la Zona Semiarida; Argentina
Materia
Soil Respiration
Community Level Physiological Profiling
N Limitation
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/16984

id CONICETDig_84b9ffc6e0d30c34a288c5ad007884c0
oai_identifier_str oai:ri.conicet.gov.ar:11336/16984
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Organic waste amendment effects on soil microbial activity in a corn-rye rotation: Application of a new approach to community-level physiological profilingGarland, J. L.Mackowiak, C. L.Zabaloy, Maria CelinaSoil RespirationCommunity Level Physiological ProfilingN Limitationhttps://purl.org/becyt/ford/1.6https://purl.org/becyt/ford/1https://purl.org/becyt/ford/4.1https://purl.org/becyt/ford/4Organic fertilizers provide long-term benefits to agronomic soils, but sometimes cause short-term reductions in crop yield due to microbially mediated nitrogen (N) immobilization. A simple, rapid method to assess the integrated use of both, carbon (C) and N by soil microbial communities will be a useful monitoring tool in production agriculture. The present study evaluated a new platform for performing community-level physiological profiles (CLPP) using fluorescent-based detection of O2 consumption by soil slurries within microtiter plates. Response of a spodic Florida soil to 3 organic fertilizer amendment treatments; (1) control with no organic amendment, (2) pelletized class A?A municipal biosolids amendment, and (3) fresh dairy waste solids amendment was measured in soils taken from a corn?rye crop rotation. The CLPP assay was used to assess endogenous and substrate induced (∼75 μg C as acetate, casein, coumaric acid, mannose, or asparagine g−1 soil) respiration, with and without assay N additions (8 μg N-NH4 g−1 soil). Endogenous and substrate-induced respiration were generally greater in the dairy waste-amended soils, as quantified by a reduced lag period and greater response peak. Stimulatory effects from biosolid-amended soils were less extensive and consistent. The degree of N limitation on microbial activity was determined by comparing the response peak with and without N amendment. This difference in response (Ndiff) was greatest for all treatments during the rye exponential growth phase (prior to heading), when extractable soil NH4-N and NO3-N concentrations were lowest (i.e., < 10 mg kg−1). The dairy waste treated soils had greater Ndiff values during the rye crop as compared to the other treatments, particularly for endogenous respiration and mannose-induced respiration. Ndiff was low in all treatments during the corn crop, where extractable soil NH4-N + NO3-N remained at or above 20 mg N kg−1. Plant yield data coincided with our estimates of N-limited microbial activity, with less mid-season rye biomass under dairy waste and no yield response with corn. Overall, these data indicate that this new method allows for a rapid, ecologically relevant evaluation of organic amendment impacts on microbial soil respiration and thereby plant yield response. Further characterization and interpretation of the variation in microbial respiration among specific C substrates and the relative impact of N amendments (i.e., Ndiff), will provide insight to C and N cycling in soils receiving organic N inputs.Fil: Garland, J. L.. Dynamic Corporation. Kennedy Space Center; Estados UnidosFil: Mackowiak, C. L.. University Of Florida. Florida Museum Of History; Estados UnidosFil: Zabaloy, Maria Celina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Centro de Recursos Naturales Renovables de la Zona Semiarida. Universidad Nacional del Sur. Centro de Recursos Naturales Renovables de la Zona Semiarida; ArgentinaElsevier Science2010-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/16984Garland, J. L.; Mackowiak, C. L.; Zabaloy, Maria Celina; Organic waste amendment effects on soil microbial activity in a corn-rye rotation: Application of a new approach to community-level physiological profiling; Elsevier Science; Applied Soil Ecology; 44; 3; 3-2010; 262-2690929-1393enginfo:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0929139310000089info:eu-repo/semantics/altIdentifier/doi/10.1016/j.apsoil.2010.01.003info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:37:21Zoai:ri.conicet.gov.ar:11336/16984instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:37:22.27CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Organic waste amendment effects on soil microbial activity in a corn-rye rotation: Application of a new approach to community-level physiological profiling
title Organic waste amendment effects on soil microbial activity in a corn-rye rotation: Application of a new approach to community-level physiological profiling
spellingShingle Organic waste amendment effects on soil microbial activity in a corn-rye rotation: Application of a new approach to community-level physiological profiling
Garland, J. L.
Soil Respiration
Community Level Physiological Profiling
N Limitation
title_short Organic waste amendment effects on soil microbial activity in a corn-rye rotation: Application of a new approach to community-level physiological profiling
title_full Organic waste amendment effects on soil microbial activity in a corn-rye rotation: Application of a new approach to community-level physiological profiling
title_fullStr Organic waste amendment effects on soil microbial activity in a corn-rye rotation: Application of a new approach to community-level physiological profiling
title_full_unstemmed Organic waste amendment effects on soil microbial activity in a corn-rye rotation: Application of a new approach to community-level physiological profiling
title_sort Organic waste amendment effects on soil microbial activity in a corn-rye rotation: Application of a new approach to community-level physiological profiling
dc.creator.none.fl_str_mv Garland, J. L.
Mackowiak, C. L.
Zabaloy, Maria Celina
author Garland, J. L.
author_facet Garland, J. L.
Mackowiak, C. L.
Zabaloy, Maria Celina
author_role author
author2 Mackowiak, C. L.
Zabaloy, Maria Celina
author2_role author
author
dc.subject.none.fl_str_mv Soil Respiration
Community Level Physiological Profiling
N Limitation
topic Soil Respiration
Community Level Physiological Profiling
N Limitation
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.6
https://purl.org/becyt/ford/1
https://purl.org/becyt/ford/4.1
https://purl.org/becyt/ford/4
dc.description.none.fl_txt_mv Organic fertilizers provide long-term benefits to agronomic soils, but sometimes cause short-term reductions in crop yield due to microbially mediated nitrogen (N) immobilization. A simple, rapid method to assess the integrated use of both, carbon (C) and N by soil microbial communities will be a useful monitoring tool in production agriculture. The present study evaluated a new platform for performing community-level physiological profiles (CLPP) using fluorescent-based detection of O2 consumption by soil slurries within microtiter plates. Response of a spodic Florida soil to 3 organic fertilizer amendment treatments; (1) control with no organic amendment, (2) pelletized class A?A municipal biosolids amendment, and (3) fresh dairy waste solids amendment was measured in soils taken from a corn?rye crop rotation. The CLPP assay was used to assess endogenous and substrate induced (∼75 μg C as acetate, casein, coumaric acid, mannose, or asparagine g−1 soil) respiration, with and without assay N additions (8 μg N-NH4 g−1 soil). Endogenous and substrate-induced respiration were generally greater in the dairy waste-amended soils, as quantified by a reduced lag period and greater response peak. Stimulatory effects from biosolid-amended soils were less extensive and consistent. The degree of N limitation on microbial activity was determined by comparing the response peak with and without N amendment. This difference in response (Ndiff) was greatest for all treatments during the rye exponential growth phase (prior to heading), when extractable soil NH4-N and NO3-N concentrations were lowest (i.e., < 10 mg kg−1). The dairy waste treated soils had greater Ndiff values during the rye crop as compared to the other treatments, particularly for endogenous respiration and mannose-induced respiration. Ndiff was low in all treatments during the corn crop, where extractable soil NH4-N + NO3-N remained at or above 20 mg N kg−1. Plant yield data coincided with our estimates of N-limited microbial activity, with less mid-season rye biomass under dairy waste and no yield response with corn. Overall, these data indicate that this new method allows for a rapid, ecologically relevant evaluation of organic amendment impacts on microbial soil respiration and thereby plant yield response. Further characterization and interpretation of the variation in microbial respiration among specific C substrates and the relative impact of N amendments (i.e., Ndiff), will provide insight to C and N cycling in soils receiving organic N inputs.
Fil: Garland, J. L.. Dynamic Corporation. Kennedy Space Center; Estados Unidos
Fil: Mackowiak, C. L.. University Of Florida. Florida Museum Of History; Estados Unidos
Fil: Zabaloy, Maria Celina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Centro de Recursos Naturales Renovables de la Zona Semiarida. Universidad Nacional del Sur. Centro de Recursos Naturales Renovables de la Zona Semiarida; Argentina
description Organic fertilizers provide long-term benefits to agronomic soils, but sometimes cause short-term reductions in crop yield due to microbially mediated nitrogen (N) immobilization. A simple, rapid method to assess the integrated use of both, carbon (C) and N by soil microbial communities will be a useful monitoring tool in production agriculture. The present study evaluated a new platform for performing community-level physiological profiles (CLPP) using fluorescent-based detection of O2 consumption by soil slurries within microtiter plates. Response of a spodic Florida soil to 3 organic fertilizer amendment treatments; (1) control with no organic amendment, (2) pelletized class A?A municipal biosolids amendment, and (3) fresh dairy waste solids amendment was measured in soils taken from a corn?rye crop rotation. The CLPP assay was used to assess endogenous and substrate induced (∼75 μg C as acetate, casein, coumaric acid, mannose, or asparagine g−1 soil) respiration, with and without assay N additions (8 μg N-NH4 g−1 soil). Endogenous and substrate-induced respiration were generally greater in the dairy waste-amended soils, as quantified by a reduced lag period and greater response peak. Stimulatory effects from biosolid-amended soils were less extensive and consistent. The degree of N limitation on microbial activity was determined by comparing the response peak with and without N amendment. This difference in response (Ndiff) was greatest for all treatments during the rye exponential growth phase (prior to heading), when extractable soil NH4-N and NO3-N concentrations were lowest (i.e., < 10 mg kg−1). The dairy waste treated soils had greater Ndiff values during the rye crop as compared to the other treatments, particularly for endogenous respiration and mannose-induced respiration. Ndiff was low in all treatments during the corn crop, where extractable soil NH4-N + NO3-N remained at or above 20 mg N kg−1. Plant yield data coincided with our estimates of N-limited microbial activity, with less mid-season rye biomass under dairy waste and no yield response with corn. Overall, these data indicate that this new method allows for a rapid, ecologically relevant evaluation of organic amendment impacts on microbial soil respiration and thereby plant yield response. Further characterization and interpretation of the variation in microbial respiration among specific C substrates and the relative impact of N amendments (i.e., Ndiff), will provide insight to C and N cycling in soils receiving organic N inputs.
publishDate 2010
dc.date.none.fl_str_mv 2010-03
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/16984
Garland, J. L.; Mackowiak, C. L.; Zabaloy, Maria Celina; Organic waste amendment effects on soil microbial activity in a corn-rye rotation: Application of a new approach to community-level physiological profiling; Elsevier Science; Applied Soil Ecology; 44; 3; 3-2010; 262-269
0929-1393
url http://hdl.handle.net/11336/16984
identifier_str_mv Garland, J. L.; Mackowiak, C. L.; Zabaloy, Maria Celina; Organic waste amendment effects on soil microbial activity in a corn-rye rotation: Application of a new approach to community-level physiological profiling; Elsevier Science; Applied Soil Ecology; 44; 3; 3-2010; 262-269
0929-1393
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0929139310000089
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.apsoil.2010.01.003
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier Science
publisher.none.fl_str_mv Elsevier Science
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614393863602176
score 13.070432