Laura Skew Group Algebras
- Autores
- Assem, Ibrahim; Lanzilotta, Marcelo; Redondo, Maria Julia
- Año de publicación
- 2007
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We prove that if A is an artin algebra, G is a finite group acting on A such that |G| is invertible in A, and R=A[G]b is a basic algebra associated with the skew group algebra, then A is left supported (or right supported, or laura, or left glued, or right glued, or weakly shod, or shod) if and only if so is R.
Fil: Assem, Ibrahim. University of Sherbrooke; Canadá
Fil: Lanzilotta, Marcelo. Universidad de la República; Uruguay
Fil: Redondo, Maria Julia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentina - Materia
-
LAURA ALGEBRAS
LEFT AND RIGHT PARTS OF THE MODULE CATEGORY
SKEW GROUP ALGEBRAS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/95365
Ver los metadatos del registro completo
id |
CONICETDig_1fd59069ebd271698fac90dee35fb173 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/95365 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Laura Skew Group AlgebrasAssem, IbrahimLanzilotta, MarceloRedondo, Maria JuliaLAURA ALGEBRASLEFT AND RIGHT PARTS OF THE MODULE CATEGORYSKEW GROUP ALGEBRAShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We prove that if A is an artin algebra, G is a finite group acting on A such that |G| is invertible in A, and R=A[G]b is a basic algebra associated with the skew group algebra, then A is left supported (or right supported, or laura, or left glued, or right glued, or weakly shod, or shod) if and only if so is R.Fil: Assem, Ibrahim. University of Sherbrooke; CanadáFil: Lanzilotta, Marcelo. Universidad de la República; UruguayFil: Redondo, Maria Julia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; ArgentinaTaylor & Francis2007-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/95365Assem, Ibrahim; Lanzilotta, Marcelo; Redondo, Maria Julia; Laura Skew Group Algebras; Taylor & Francis; Communications In Algebra; 35; 7; 7-2007; 2241-22570092-7872CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1080/00927870701302230info:eu-repo/semantics/altIdentifier/url/https://www.tandfonline.com/doi/abs/10.1080/00927870701302230info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:04:22Zoai:ri.conicet.gov.ar:11336/95365instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:04:22.624CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Laura Skew Group Algebras |
title |
Laura Skew Group Algebras |
spellingShingle |
Laura Skew Group Algebras Assem, Ibrahim LAURA ALGEBRAS LEFT AND RIGHT PARTS OF THE MODULE CATEGORY SKEW GROUP ALGEBRAS |
title_short |
Laura Skew Group Algebras |
title_full |
Laura Skew Group Algebras |
title_fullStr |
Laura Skew Group Algebras |
title_full_unstemmed |
Laura Skew Group Algebras |
title_sort |
Laura Skew Group Algebras |
dc.creator.none.fl_str_mv |
Assem, Ibrahim Lanzilotta, Marcelo Redondo, Maria Julia |
author |
Assem, Ibrahim |
author_facet |
Assem, Ibrahim Lanzilotta, Marcelo Redondo, Maria Julia |
author_role |
author |
author2 |
Lanzilotta, Marcelo Redondo, Maria Julia |
author2_role |
author author |
dc.subject.none.fl_str_mv |
LAURA ALGEBRAS LEFT AND RIGHT PARTS OF THE MODULE CATEGORY SKEW GROUP ALGEBRAS |
topic |
LAURA ALGEBRAS LEFT AND RIGHT PARTS OF THE MODULE CATEGORY SKEW GROUP ALGEBRAS |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We prove that if A is an artin algebra, G is a finite group acting on A such that |G| is invertible in A, and R=A[G]b is a basic algebra associated with the skew group algebra, then A is left supported (or right supported, or laura, or left glued, or right glued, or weakly shod, or shod) if and only if so is R. Fil: Assem, Ibrahim. University of Sherbrooke; Canadá Fil: Lanzilotta, Marcelo. Universidad de la República; Uruguay Fil: Redondo, Maria Julia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentina |
description |
We prove that if A is an artin algebra, G is a finite group acting on A such that |G| is invertible in A, and R=A[G]b is a basic algebra associated with the skew group algebra, then A is left supported (or right supported, or laura, or left glued, or right glued, or weakly shod, or shod) if and only if so is R. |
publishDate |
2007 |
dc.date.none.fl_str_mv |
2007-07 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/95365 Assem, Ibrahim; Lanzilotta, Marcelo; Redondo, Maria Julia; Laura Skew Group Algebras; Taylor & Francis; Communications In Algebra; 35; 7; 7-2007; 2241-2257 0092-7872 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/95365 |
identifier_str_mv |
Assem, Ibrahim; Lanzilotta, Marcelo; Redondo, Maria Julia; Laura Skew Group Algebras; Taylor & Francis; Communications In Algebra; 35; 7; 7-2007; 2241-2257 0092-7872 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1080/00927870701302230 info:eu-repo/semantics/altIdentifier/url/https://www.tandfonline.com/doi/abs/10.1080/00927870701302230 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Taylor & Francis |
publisher.none.fl_str_mv |
Taylor & Francis |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613869183434752 |
score |
13.070432 |