Laura Skew Group Algebras

Autores
Assem, Ibrahim; Lanzilotta, Marcelo; Redondo, Maria Julia
Año de publicación
2007
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We prove that if A is an artin algebra, G is a finite group acting on A such that |G| is invertible in A, and R=A[G]b is a basic algebra associated with the skew group algebra, then A is left supported (or right supported, or laura, or left glued, or right glued, or weakly shod, or shod) if and only if so is R.
Fil: Assem, Ibrahim. University of Sherbrooke; Canadá
Fil: Lanzilotta, Marcelo. Universidad de la República; Uruguay
Fil: Redondo, Maria Julia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentina
Materia
LAURA ALGEBRAS
LEFT AND RIGHT PARTS OF THE MODULE CATEGORY
SKEW GROUP ALGEBRAS
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/95365

id CONICETDig_1fd59069ebd271698fac90dee35fb173
oai_identifier_str oai:ri.conicet.gov.ar:11336/95365
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Laura Skew Group AlgebrasAssem, IbrahimLanzilotta, MarceloRedondo, Maria JuliaLAURA ALGEBRASLEFT AND RIGHT PARTS OF THE MODULE CATEGORYSKEW GROUP ALGEBRAShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We prove that if A is an artin algebra, G is a finite group acting on A such that |G| is invertible in A, and R=A[G]b is a basic algebra associated with the skew group algebra, then A is left supported (or right supported, or laura, or left glued, or right glued, or weakly shod, or shod) if and only if so is R.Fil: Assem, Ibrahim. University of Sherbrooke; CanadáFil: Lanzilotta, Marcelo. Universidad de la República; UruguayFil: Redondo, Maria Julia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; ArgentinaTaylor & Francis2007-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/95365Assem, Ibrahim; Lanzilotta, Marcelo; Redondo, Maria Julia; Laura Skew Group Algebras; Taylor & Francis; Communications In Algebra; 35; 7; 7-2007; 2241-22570092-7872CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1080/00927870701302230info:eu-repo/semantics/altIdentifier/url/https://www.tandfonline.com/doi/abs/10.1080/00927870701302230info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:04:22Zoai:ri.conicet.gov.ar:11336/95365instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:04:22.624CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Laura Skew Group Algebras
title Laura Skew Group Algebras
spellingShingle Laura Skew Group Algebras
Assem, Ibrahim
LAURA ALGEBRAS
LEFT AND RIGHT PARTS OF THE MODULE CATEGORY
SKEW GROUP ALGEBRAS
title_short Laura Skew Group Algebras
title_full Laura Skew Group Algebras
title_fullStr Laura Skew Group Algebras
title_full_unstemmed Laura Skew Group Algebras
title_sort Laura Skew Group Algebras
dc.creator.none.fl_str_mv Assem, Ibrahim
Lanzilotta, Marcelo
Redondo, Maria Julia
author Assem, Ibrahim
author_facet Assem, Ibrahim
Lanzilotta, Marcelo
Redondo, Maria Julia
author_role author
author2 Lanzilotta, Marcelo
Redondo, Maria Julia
author2_role author
author
dc.subject.none.fl_str_mv LAURA ALGEBRAS
LEFT AND RIGHT PARTS OF THE MODULE CATEGORY
SKEW GROUP ALGEBRAS
topic LAURA ALGEBRAS
LEFT AND RIGHT PARTS OF THE MODULE CATEGORY
SKEW GROUP ALGEBRAS
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We prove that if A is an artin algebra, G is a finite group acting on A such that |G| is invertible in A, and R=A[G]b is a basic algebra associated with the skew group algebra, then A is left supported (or right supported, or laura, or left glued, or right glued, or weakly shod, or shod) if and only if so is R.
Fil: Assem, Ibrahim. University of Sherbrooke; Canadá
Fil: Lanzilotta, Marcelo. Universidad de la República; Uruguay
Fil: Redondo, Maria Julia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentina
description We prove that if A is an artin algebra, G is a finite group acting on A such that |G| is invertible in A, and R=A[G]b is a basic algebra associated with the skew group algebra, then A is left supported (or right supported, or laura, or left glued, or right glued, or weakly shod, or shod) if and only if so is R.
publishDate 2007
dc.date.none.fl_str_mv 2007-07
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/95365
Assem, Ibrahim; Lanzilotta, Marcelo; Redondo, Maria Julia; Laura Skew Group Algebras; Taylor & Francis; Communications In Algebra; 35; 7; 7-2007; 2241-2257
0092-7872
CONICET Digital
CONICET
url http://hdl.handle.net/11336/95365
identifier_str_mv Assem, Ibrahim; Lanzilotta, Marcelo; Redondo, Maria Julia; Laura Skew Group Algebras; Taylor & Francis; Communications In Algebra; 35; 7; 7-2007; 2241-2257
0092-7872
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1080/00927870701302230
info:eu-repo/semantics/altIdentifier/url/https://www.tandfonline.com/doi/abs/10.1080/00927870701302230
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Taylor & Francis
publisher.none.fl_str_mv Taylor & Francis
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613869183434752
score 13.070432