Bayes Clustering Operators for Known Random Labeled Point Processes
- Autores
- Dalton, Lori A.; Benalcazar Palacios, Marco Enrique; Brun, Marcel; Dougherty, Edward
- Año de publicación
- 2013
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- There is a widespread belief that clustering is inherently subjective. To quote A. K. Jain, "As a task, clustering is subjective in nature. The same dataset may need to be partitioned differently for different purposes." One is then left with a number of questions: Where do clustering algorithms account for statistical properties of the sampling procedure? How can one address the ability of a clusterer to make inferences without a definition of its predictive capacity? This work develops a probabilistic theory of clustering that fully parallels the well-developed Bayes decision theory for classification, making it possible to address these questions and transform clustering from a subjective activity to an objective operation.
Fil: Dalton, Lori A.. Ohio State University; Estados Unidos
Fil: Benalcazar Palacios, Marco Enrique. Secretaríıa Nacional de Educación Superior; Ecuador. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Mar del Plata. Facultad de Ingeniería; Argentina
Fil: Brun, Marcel. Universidad Nacional de Mar del Plata. Facultad de Ingeniería; Argentina
Fil: Dougherty, Edward. Texas A&M University; Estados Unidos. Translational Genomics Research Institute. Phoenix; Estados Unidos - Materia
-
Clustering Algorithms
Partitioning Algorithms
Couplings
Probabilistic Logic
Error Analysis
Labeling
Hamming Distance - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/25229
Ver los metadatos del registro completo
id |
CONICETDig_1f51ee5280c952a15e2745efa87b584e |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/25229 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Bayes Clustering Operators for Known Random Labeled Point ProcessesDalton, Lori A.Benalcazar Palacios, Marco EnriqueBrun, MarcelDougherty, EdwardClustering AlgorithmsPartitioning AlgorithmsCouplingsProbabilistic LogicError AnalysisLabelingHamming Distancehttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1There is a widespread belief that clustering is inherently subjective. To quote A. K. Jain, "As a task, clustering is subjective in nature. The same dataset may need to be partitioned differently for different purposes." One is then left with a number of questions: Where do clustering algorithms account for statistical properties of the sampling procedure? How can one address the ability of a clusterer to make inferences without a definition of its predictive capacity? This work develops a probabilistic theory of clustering that fully parallels the well-developed Bayes decision theory for classification, making it possible to address these questions and transform clustering from a subjective activity to an objective operation.Fil: Dalton, Lori A.. Ohio State University; Estados UnidosFil: Benalcazar Palacios, Marco Enrique. Secretaríıa Nacional de Educación Superior; Ecuador. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Mar del Plata. Facultad de Ingeniería; ArgentinaFil: Brun, Marcel. Universidad Nacional de Mar del Plata. Facultad de Ingeniería; ArgentinaFil: Dougherty, Edward. Texas A&M University; Estados Unidos. Translational Genomics Research Institute. Phoenix; Estados UnidosIEEE Acoustics Speech and Signal Processing Society2013-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/25229Dalton, Lori A.; Benalcazar Palacios, Marco Enrique; Brun, Marcel; Dougherty, Edward; Bayes Clustering Operators for Known Random Labeled Point Processes; IEEE Acoustics Speech and Signal Processing Society; Asilomar Conference on Signals Systems & Computers; 5-2013; 893-8971058-6393CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1109/ACSSC.2013.6810417info:eu-repo/semantics/altIdentifier/url/http://ieeexplore.ieee.org/document/6810417/info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:54:52Zoai:ri.conicet.gov.ar:11336/25229instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:54:52.53CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Bayes Clustering Operators for Known Random Labeled Point Processes |
title |
Bayes Clustering Operators for Known Random Labeled Point Processes |
spellingShingle |
Bayes Clustering Operators for Known Random Labeled Point Processes Dalton, Lori A. Clustering Algorithms Partitioning Algorithms Couplings Probabilistic Logic Error Analysis Labeling Hamming Distance |
title_short |
Bayes Clustering Operators for Known Random Labeled Point Processes |
title_full |
Bayes Clustering Operators for Known Random Labeled Point Processes |
title_fullStr |
Bayes Clustering Operators for Known Random Labeled Point Processes |
title_full_unstemmed |
Bayes Clustering Operators for Known Random Labeled Point Processes |
title_sort |
Bayes Clustering Operators for Known Random Labeled Point Processes |
dc.creator.none.fl_str_mv |
Dalton, Lori A. Benalcazar Palacios, Marco Enrique Brun, Marcel Dougherty, Edward |
author |
Dalton, Lori A. |
author_facet |
Dalton, Lori A. Benalcazar Palacios, Marco Enrique Brun, Marcel Dougherty, Edward |
author_role |
author |
author2 |
Benalcazar Palacios, Marco Enrique Brun, Marcel Dougherty, Edward |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
Clustering Algorithms Partitioning Algorithms Couplings Probabilistic Logic Error Analysis Labeling Hamming Distance |
topic |
Clustering Algorithms Partitioning Algorithms Couplings Probabilistic Logic Error Analysis Labeling Hamming Distance |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.2 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
There is a widespread belief that clustering is inherently subjective. To quote A. K. Jain, "As a task, clustering is subjective in nature. The same dataset may need to be partitioned differently for different purposes." One is then left with a number of questions: Where do clustering algorithms account for statistical properties of the sampling procedure? How can one address the ability of a clusterer to make inferences without a definition of its predictive capacity? This work develops a probabilistic theory of clustering that fully parallels the well-developed Bayes decision theory for classification, making it possible to address these questions and transform clustering from a subjective activity to an objective operation. Fil: Dalton, Lori A.. Ohio State University; Estados Unidos Fil: Benalcazar Palacios, Marco Enrique. Secretaríıa Nacional de Educación Superior; Ecuador. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Mar del Plata. Facultad de Ingeniería; Argentina Fil: Brun, Marcel. Universidad Nacional de Mar del Plata. Facultad de Ingeniería; Argentina Fil: Dougherty, Edward. Texas A&M University; Estados Unidos. Translational Genomics Research Institute. Phoenix; Estados Unidos |
description |
There is a widespread belief that clustering is inherently subjective. To quote A. K. Jain, "As a task, clustering is subjective in nature. The same dataset may need to be partitioned differently for different purposes." One is then left with a number of questions: Where do clustering algorithms account for statistical properties of the sampling procedure? How can one address the ability of a clusterer to make inferences without a definition of its predictive capacity? This work develops a probabilistic theory of clustering that fully parallels the well-developed Bayes decision theory for classification, making it possible to address these questions and transform clustering from a subjective activity to an objective operation. |
publishDate |
2013 |
dc.date.none.fl_str_mv |
2013-05 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/25229 Dalton, Lori A.; Benalcazar Palacios, Marco Enrique; Brun, Marcel; Dougherty, Edward; Bayes Clustering Operators for Known Random Labeled Point Processes; IEEE Acoustics Speech and Signal Processing Society; Asilomar Conference on Signals Systems & Computers; 5-2013; 893-897 1058-6393 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/25229 |
identifier_str_mv |
Dalton, Lori A.; Benalcazar Palacios, Marco Enrique; Brun, Marcel; Dougherty, Edward; Bayes Clustering Operators for Known Random Labeled Point Processes; IEEE Acoustics Speech and Signal Processing Society; Asilomar Conference on Signals Systems & Computers; 5-2013; 893-897 1058-6393 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1109/ACSSC.2013.6810417 info:eu-repo/semantics/altIdentifier/url/http://ieeexplore.ieee.org/document/6810417/ |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
IEEE Acoustics Speech and Signal Processing Society |
publisher.none.fl_str_mv |
IEEE Acoustics Speech and Signal Processing Society |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269311966642176 |
score |
13.13397 |