Bayes Clustering Operators for Known Random Labeled Point Processes

Autores
Dalton, Lori A.; Benalcazar Palacios, Marco Enrique; Brun, Marcel; Dougherty, Edward
Año de publicación
2013
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
There is a widespread belief that clustering is inherently subjective. To quote A. K. Jain, "As a task, clustering is subjective in nature. The same dataset may need to be partitioned differently for different purposes." One is then left with a number of questions: Where do clustering algorithms account for statistical properties of the sampling procedure? How can one address the ability of a clusterer to make inferences without a definition of its predictive capacity? This work develops a probabilistic theory of clustering that fully parallels the well-developed Bayes decision theory for classification, making it possible to address these questions and transform clustering from a subjective activity to an objective operation.
Fil: Dalton, Lori A.. Ohio State University; Estados Unidos
Fil: Benalcazar Palacios, Marco Enrique. Secretaríıa Nacional de Educación Superior; Ecuador. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Mar del Plata. Facultad de Ingeniería; Argentina
Fil: Brun, Marcel. Universidad Nacional de Mar del Plata. Facultad de Ingeniería; Argentina
Fil: Dougherty, Edward. Texas A&M University; Estados Unidos. Translational Genomics Research Institute. Phoenix; Estados Unidos
Materia
Clustering Algorithms
Partitioning Algorithms
Couplings
Probabilistic Logic
Error Analysis
Labeling
Hamming Distance
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/25229

id CONICETDig_1f51ee5280c952a15e2745efa87b584e
oai_identifier_str oai:ri.conicet.gov.ar:11336/25229
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Bayes Clustering Operators for Known Random Labeled Point ProcessesDalton, Lori A.Benalcazar Palacios, Marco EnriqueBrun, MarcelDougherty, EdwardClustering AlgorithmsPartitioning AlgorithmsCouplingsProbabilistic LogicError AnalysisLabelingHamming Distancehttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1There is a widespread belief that clustering is inherently subjective. To quote A. K. Jain, "As a task, clustering is subjective in nature. The same dataset may need to be partitioned differently for different purposes." One is then left with a number of questions: Where do clustering algorithms account for statistical properties of the sampling procedure? How can one address the ability of a clusterer to make inferences without a definition of its predictive capacity? This work develops a probabilistic theory of clustering that fully parallels the well-developed Bayes decision theory for classification, making it possible to address these questions and transform clustering from a subjective activity to an objective operation.Fil: Dalton, Lori A.. Ohio State University; Estados UnidosFil: Benalcazar Palacios, Marco Enrique. Secretaríıa Nacional de Educación Superior; Ecuador. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Mar del Plata. Facultad de Ingeniería; ArgentinaFil: Brun, Marcel. Universidad Nacional de Mar del Plata. Facultad de Ingeniería; ArgentinaFil: Dougherty, Edward. Texas A&M University; Estados Unidos. Translational Genomics Research Institute. Phoenix; Estados UnidosIEEE Acoustics Speech and Signal Processing Society2013-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/25229Dalton, Lori A.; Benalcazar Palacios, Marco Enrique; Brun, Marcel; Dougherty, Edward; Bayes Clustering Operators for Known Random Labeled Point Processes; IEEE Acoustics Speech and Signal Processing Society; Asilomar Conference on Signals Systems & Computers; 5-2013; 893-8971058-6393CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1109/ACSSC.2013.6810417info:eu-repo/semantics/altIdentifier/url/http://ieeexplore.ieee.org/document/6810417/info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:54:52Zoai:ri.conicet.gov.ar:11336/25229instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:54:52.53CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Bayes Clustering Operators for Known Random Labeled Point Processes
title Bayes Clustering Operators for Known Random Labeled Point Processes
spellingShingle Bayes Clustering Operators for Known Random Labeled Point Processes
Dalton, Lori A.
Clustering Algorithms
Partitioning Algorithms
Couplings
Probabilistic Logic
Error Analysis
Labeling
Hamming Distance
title_short Bayes Clustering Operators for Known Random Labeled Point Processes
title_full Bayes Clustering Operators for Known Random Labeled Point Processes
title_fullStr Bayes Clustering Operators for Known Random Labeled Point Processes
title_full_unstemmed Bayes Clustering Operators for Known Random Labeled Point Processes
title_sort Bayes Clustering Operators for Known Random Labeled Point Processes
dc.creator.none.fl_str_mv Dalton, Lori A.
Benalcazar Palacios, Marco Enrique
Brun, Marcel
Dougherty, Edward
author Dalton, Lori A.
author_facet Dalton, Lori A.
Benalcazar Palacios, Marco Enrique
Brun, Marcel
Dougherty, Edward
author_role author
author2 Benalcazar Palacios, Marco Enrique
Brun, Marcel
Dougherty, Edward
author2_role author
author
author
dc.subject.none.fl_str_mv Clustering Algorithms
Partitioning Algorithms
Couplings
Probabilistic Logic
Error Analysis
Labeling
Hamming Distance
topic Clustering Algorithms
Partitioning Algorithms
Couplings
Probabilistic Logic
Error Analysis
Labeling
Hamming Distance
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.2
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv There is a widespread belief that clustering is inherently subjective. To quote A. K. Jain, "As a task, clustering is subjective in nature. The same dataset may need to be partitioned differently for different purposes." One is then left with a number of questions: Where do clustering algorithms account for statistical properties of the sampling procedure? How can one address the ability of a clusterer to make inferences without a definition of its predictive capacity? This work develops a probabilistic theory of clustering that fully parallels the well-developed Bayes decision theory for classification, making it possible to address these questions and transform clustering from a subjective activity to an objective operation.
Fil: Dalton, Lori A.. Ohio State University; Estados Unidos
Fil: Benalcazar Palacios, Marco Enrique. Secretaríıa Nacional de Educación Superior; Ecuador. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Mar del Plata. Facultad de Ingeniería; Argentina
Fil: Brun, Marcel. Universidad Nacional de Mar del Plata. Facultad de Ingeniería; Argentina
Fil: Dougherty, Edward. Texas A&M University; Estados Unidos. Translational Genomics Research Institute. Phoenix; Estados Unidos
description There is a widespread belief that clustering is inherently subjective. To quote A. K. Jain, "As a task, clustering is subjective in nature. The same dataset may need to be partitioned differently for different purposes." One is then left with a number of questions: Where do clustering algorithms account for statistical properties of the sampling procedure? How can one address the ability of a clusterer to make inferences without a definition of its predictive capacity? This work develops a probabilistic theory of clustering that fully parallels the well-developed Bayes decision theory for classification, making it possible to address these questions and transform clustering from a subjective activity to an objective operation.
publishDate 2013
dc.date.none.fl_str_mv 2013-05
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/25229
Dalton, Lori A.; Benalcazar Palacios, Marco Enrique; Brun, Marcel; Dougherty, Edward; Bayes Clustering Operators for Known Random Labeled Point Processes; IEEE Acoustics Speech and Signal Processing Society; Asilomar Conference on Signals Systems & Computers; 5-2013; 893-897
1058-6393
CONICET Digital
CONICET
url http://hdl.handle.net/11336/25229
identifier_str_mv Dalton, Lori A.; Benalcazar Palacios, Marco Enrique; Brun, Marcel; Dougherty, Edward; Bayes Clustering Operators for Known Random Labeled Point Processes; IEEE Acoustics Speech and Signal Processing Society; Asilomar Conference on Signals Systems & Computers; 5-2013; 893-897
1058-6393
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1109/ACSSC.2013.6810417
info:eu-repo/semantics/altIdentifier/url/http://ieeexplore.ieee.org/document/6810417/
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv IEEE Acoustics Speech and Signal Processing Society
publisher.none.fl_str_mv IEEE Acoustics Speech and Signal Processing Society
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842269311966642176
score 13.13397