Evolutionary algorithms with clustering for dynamic fitness landscapes
- Autores
- Aragon, Victoria Soledad; Esquivel, Susana Cecilia
- Año de publicación
- 2005
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Interest on dynamic multimodal functions risen over the last years since many real problems have this feature. On these problems, the goal is no longer to find the global optimal, but to track their progression through the space as closely as possible. This paper presents three evolutionary algorithms for dynamic fitness landscapes. In order to mantain diversity in the population they use two clustering techniques and a macromutation operator. Besides, this paper compares two crossover operators: arithmetic and multiparents two points, respectively. Effectiveness and limitations of each algorithm are discuss and analyzed.
Fil: Aragon, Victoria Soledad. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis; Argentina. Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Departamento de Informática. Laboratorio Investigación y Desarrollo en Inteligencia Computacional; Argentina
Fil: Esquivel, Susana Cecilia. Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Departamento de Informática. Laboratorio Investigación y Desarrollo en Inteligencia Computacional; Argentina - Materia
-
DYNAMIC MULTIMODAL FUNCTIONS
EVOLUTIONARY ALGORITHMS
CLUSTERING ALGORITHMS
MACROMUTATION - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/158250
Ver los metadatos del registro completo
id |
CONICETDig_e183ede9cbf2a5ed883cd649b3b134d8 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/158250 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Evolutionary algorithms with clustering for dynamic fitness landscapesAragon, Victoria SoledadEsquivel, Susana CeciliaDYNAMIC MULTIMODAL FUNCTIONSEVOLUTIONARY ALGORITHMSCLUSTERING ALGORITHMSMACROMUTATIONhttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1Interest on dynamic multimodal functions risen over the last years since many real problems have this feature. On these problems, the goal is no longer to find the global optimal, but to track their progression through the space as closely as possible. This paper presents three evolutionary algorithms for dynamic fitness landscapes. In order to mantain diversity in the population they use two clustering techniques and a macromutation operator. Besides, this paper compares two crossover operators: arithmetic and multiparents two points, respectively. Effectiveness and limitations of each algorithm are discuss and analyzed.Fil: Aragon, Victoria Soledad. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis; Argentina. Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Departamento de Informática. Laboratorio Investigación y Desarrollo en Inteligencia Computacional; ArgentinaFil: Esquivel, Susana Cecilia. Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Departamento de Informática. Laboratorio Investigación y Desarrollo en Inteligencia Computacional; ArgentinaUniversidad Nacional de La Plata. Facultad de Informática2005-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/158250Aragon, Victoria Soledad; Esquivel, Susana Cecilia; Evolutionary algorithms with clustering for dynamic fitness landscapes; Universidad Nacional de La Plata. Facultad de Informática; Journal of Computer Science & Technology; 5; 4; 12-2005; 196-2031666-60461666-6038CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://journal.info.unlp.edu.ar/JCST/article/view/836info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T14:21:57Zoai:ri.conicet.gov.ar:11336/158250instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 14:21:57.963CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Evolutionary algorithms with clustering for dynamic fitness landscapes |
title |
Evolutionary algorithms with clustering for dynamic fitness landscapes |
spellingShingle |
Evolutionary algorithms with clustering for dynamic fitness landscapes Aragon, Victoria Soledad DYNAMIC MULTIMODAL FUNCTIONS EVOLUTIONARY ALGORITHMS CLUSTERING ALGORITHMS MACROMUTATION |
title_short |
Evolutionary algorithms with clustering for dynamic fitness landscapes |
title_full |
Evolutionary algorithms with clustering for dynamic fitness landscapes |
title_fullStr |
Evolutionary algorithms with clustering for dynamic fitness landscapes |
title_full_unstemmed |
Evolutionary algorithms with clustering for dynamic fitness landscapes |
title_sort |
Evolutionary algorithms with clustering for dynamic fitness landscapes |
dc.creator.none.fl_str_mv |
Aragon, Victoria Soledad Esquivel, Susana Cecilia |
author |
Aragon, Victoria Soledad |
author_facet |
Aragon, Victoria Soledad Esquivel, Susana Cecilia |
author_role |
author |
author2 |
Esquivel, Susana Cecilia |
author2_role |
author |
dc.subject.none.fl_str_mv |
DYNAMIC MULTIMODAL FUNCTIONS EVOLUTIONARY ALGORITHMS CLUSTERING ALGORITHMS MACROMUTATION |
topic |
DYNAMIC MULTIMODAL FUNCTIONS EVOLUTIONARY ALGORITHMS CLUSTERING ALGORITHMS MACROMUTATION |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.2 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Interest on dynamic multimodal functions risen over the last years since many real problems have this feature. On these problems, the goal is no longer to find the global optimal, but to track their progression through the space as closely as possible. This paper presents three evolutionary algorithms for dynamic fitness landscapes. In order to mantain diversity in the population they use two clustering techniques and a macromutation operator. Besides, this paper compares two crossover operators: arithmetic and multiparents two points, respectively. Effectiveness and limitations of each algorithm are discuss and analyzed. Fil: Aragon, Victoria Soledad. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis; Argentina. Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Departamento de Informática. Laboratorio Investigación y Desarrollo en Inteligencia Computacional; Argentina Fil: Esquivel, Susana Cecilia. Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Departamento de Informática. Laboratorio Investigación y Desarrollo en Inteligencia Computacional; Argentina |
description |
Interest on dynamic multimodal functions risen over the last years since many real problems have this feature. On these problems, the goal is no longer to find the global optimal, but to track their progression through the space as closely as possible. This paper presents three evolutionary algorithms for dynamic fitness landscapes. In order to mantain diversity in the population they use two clustering techniques and a macromutation operator. Besides, this paper compares two crossover operators: arithmetic and multiparents two points, respectively. Effectiveness and limitations of each algorithm are discuss and analyzed. |
publishDate |
2005 |
dc.date.none.fl_str_mv |
2005-12 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/158250 Aragon, Victoria Soledad; Esquivel, Susana Cecilia; Evolutionary algorithms with clustering for dynamic fitness landscapes; Universidad Nacional de La Plata. Facultad de Informática; Journal of Computer Science & Technology; 5; 4; 12-2005; 196-203 1666-6046 1666-6038 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/158250 |
identifier_str_mv |
Aragon, Victoria Soledad; Esquivel, Susana Cecilia; Evolutionary algorithms with clustering for dynamic fitness landscapes; Universidad Nacional de La Plata. Facultad de Informática; Journal of Computer Science & Technology; 5; 4; 12-2005; 196-203 1666-6046 1666-6038 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://journal.info.unlp.edu.ar/JCST/article/view/836 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Universidad Nacional de La Plata. Facultad de Informática |
publisher.none.fl_str_mv |
Universidad Nacional de La Plata. Facultad de Informática |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846082612670496768 |
score |
13.22299 |