Analytic Representation of Bayes Labeling and Bayes Clustering Operators for Random Labeled Point Processes

Autores
Dalton, Lori A.; Benalcazar Palacios, Marco Enrique; Brun, Marcel; Dougherty, Edward R.
Año de publicación
2015
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Clustering algorithms typically group points based on some similarity criterion, but without reference to an underlying random process to make clustering algorithms rigorously predictive. In fact, there exists a probabilistic theory of clustering in the context of random labeled point sets in which clustering error is defined in terms of the process. In the present paper, given an underlying point process we develop a general analytic procedure for finding an optimal clustering operator, the Bayes clusterer, that corresponds to the Bayes classifier in classification theory. We provide detailed solutions under Gaussian models. Owing to computational complexity we also develop approximations of the Bayes clusterer.
Fil: Dalton, Lori A.. Ohio State University; Estados Unidos
Fil: Benalcazar Palacios, Marco Enrique. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Mar del Plata. Facultad de Ingeniería; Argentina
Fil: Brun, Marcel. Universidad Nacional de Mar del Plata. Facultad de Ingeniería; Argentina
Fil: Dougherty, Edward R.. Texas A&M University; Estados Unidos
Materia
Bayes Classification
Bayesian Estimation
Clustering
Pattern Recognition
Small Samples
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/45678

id CONICETDig_ca2826e5ae68b5216ced1a5adbdc612a
oai_identifier_str oai:ri.conicet.gov.ar:11336/45678
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Analytic Representation of Bayes Labeling and Bayes Clustering Operators for Random Labeled Point ProcessesDalton, Lori A.Benalcazar Palacios, Marco EnriqueBrun, MarcelDougherty, Edward R.Bayes ClassificationBayesian EstimationClusteringPattern RecognitionSmall Sampleshttps://purl.org/becyt/ford/2.2https://purl.org/becyt/ford/2Clustering algorithms typically group points based on some similarity criterion, but without reference to an underlying random process to make clustering algorithms rigorously predictive. In fact, there exists a probabilistic theory of clustering in the context of random labeled point sets in which clustering error is defined in terms of the process. In the present paper, given an underlying point process we develop a general analytic procedure for finding an optimal clustering operator, the Bayes clusterer, that corresponds to the Bayes classifier in classification theory. We provide detailed solutions under Gaussian models. Owing to computational complexity we also develop approximations of the Bayes clusterer.Fil: Dalton, Lori A.. Ohio State University; Estados UnidosFil: Benalcazar Palacios, Marco Enrique. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Mar del Plata. Facultad de Ingeniería; ArgentinaFil: Brun, Marcel. Universidad Nacional de Mar del Plata. Facultad de Ingeniería; ArgentinaFil: Dougherty, Edward R.. Texas A&M University; Estados UnidosInstitute of Electrical and Electronics Engineers2015-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/45678Dalton, Lori A.; Benalcazar Palacios, Marco Enrique; Brun, Marcel; Dougherty, Edward R.; Analytic Representation of Bayes Labeling and Bayes Clustering Operators for Random Labeled Point Processes; Institute of Electrical and Electronics Engineers; IEEE Transactions On Signal Processing; 63; 6; 3-2015; 1605-16201053-5888CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1109/TSP.2015.2399870info:eu-repo/semantics/altIdentifier/url/https://ieeexplore.ieee.org/document/7029715/info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:09:24Zoai:ri.conicet.gov.ar:11336/45678instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:09:24.724CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Analytic Representation of Bayes Labeling and Bayes Clustering Operators for Random Labeled Point Processes
title Analytic Representation of Bayes Labeling and Bayes Clustering Operators for Random Labeled Point Processes
spellingShingle Analytic Representation of Bayes Labeling and Bayes Clustering Operators for Random Labeled Point Processes
Dalton, Lori A.
Bayes Classification
Bayesian Estimation
Clustering
Pattern Recognition
Small Samples
title_short Analytic Representation of Bayes Labeling and Bayes Clustering Operators for Random Labeled Point Processes
title_full Analytic Representation of Bayes Labeling and Bayes Clustering Operators for Random Labeled Point Processes
title_fullStr Analytic Representation of Bayes Labeling and Bayes Clustering Operators for Random Labeled Point Processes
title_full_unstemmed Analytic Representation of Bayes Labeling and Bayes Clustering Operators for Random Labeled Point Processes
title_sort Analytic Representation of Bayes Labeling and Bayes Clustering Operators for Random Labeled Point Processes
dc.creator.none.fl_str_mv Dalton, Lori A.
Benalcazar Palacios, Marco Enrique
Brun, Marcel
Dougherty, Edward R.
author Dalton, Lori A.
author_facet Dalton, Lori A.
Benalcazar Palacios, Marco Enrique
Brun, Marcel
Dougherty, Edward R.
author_role author
author2 Benalcazar Palacios, Marco Enrique
Brun, Marcel
Dougherty, Edward R.
author2_role author
author
author
dc.subject.none.fl_str_mv Bayes Classification
Bayesian Estimation
Clustering
Pattern Recognition
Small Samples
topic Bayes Classification
Bayesian Estimation
Clustering
Pattern Recognition
Small Samples
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.2
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv Clustering algorithms typically group points based on some similarity criterion, but without reference to an underlying random process to make clustering algorithms rigorously predictive. In fact, there exists a probabilistic theory of clustering in the context of random labeled point sets in which clustering error is defined in terms of the process. In the present paper, given an underlying point process we develop a general analytic procedure for finding an optimal clustering operator, the Bayes clusterer, that corresponds to the Bayes classifier in classification theory. We provide detailed solutions under Gaussian models. Owing to computational complexity we also develop approximations of the Bayes clusterer.
Fil: Dalton, Lori A.. Ohio State University; Estados Unidos
Fil: Benalcazar Palacios, Marco Enrique. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Mar del Plata. Facultad de Ingeniería; Argentina
Fil: Brun, Marcel. Universidad Nacional de Mar del Plata. Facultad de Ingeniería; Argentina
Fil: Dougherty, Edward R.. Texas A&M University; Estados Unidos
description Clustering algorithms typically group points based on some similarity criterion, but without reference to an underlying random process to make clustering algorithms rigorously predictive. In fact, there exists a probabilistic theory of clustering in the context of random labeled point sets in which clustering error is defined in terms of the process. In the present paper, given an underlying point process we develop a general analytic procedure for finding an optimal clustering operator, the Bayes clusterer, that corresponds to the Bayes classifier in classification theory. We provide detailed solutions under Gaussian models. Owing to computational complexity we also develop approximations of the Bayes clusterer.
publishDate 2015
dc.date.none.fl_str_mv 2015-03
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/45678
Dalton, Lori A.; Benalcazar Palacios, Marco Enrique; Brun, Marcel; Dougherty, Edward R.; Analytic Representation of Bayes Labeling and Bayes Clustering Operators for Random Labeled Point Processes; Institute of Electrical and Electronics Engineers; IEEE Transactions On Signal Processing; 63; 6; 3-2015; 1605-1620
1053-5888
CONICET Digital
CONICET
url http://hdl.handle.net/11336/45678
identifier_str_mv Dalton, Lori A.; Benalcazar Palacios, Marco Enrique; Brun, Marcel; Dougherty, Edward R.; Analytic Representation of Bayes Labeling and Bayes Clustering Operators for Random Labeled Point Processes; Institute of Electrical and Electronics Engineers; IEEE Transactions On Signal Processing; 63; 6; 3-2015; 1605-1620
1053-5888
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1109/TSP.2015.2399870
info:eu-repo/semantics/altIdentifier/url/https://ieeexplore.ieee.org/document/7029715/
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Institute of Electrical and Electronics Engineers
publisher.none.fl_str_mv Institute of Electrical and Electronics Engineers
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842270079353356288
score 13.13397