Analytic Representation of Bayes Labeling and Bayes Clustering Operators for Random Labeled Point Processes
- Autores
- Dalton, Lori A.; Benalcazar Palacios, Marco Enrique; Brun, Marcel; Dougherty, Edward R.
- Año de publicación
- 2015
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Clustering algorithms typically group points based on some similarity criterion, but without reference to an underlying random process to make clustering algorithms rigorously predictive. In fact, there exists a probabilistic theory of clustering in the context of random labeled point sets in which clustering error is defined in terms of the process. In the present paper, given an underlying point process we develop a general analytic procedure for finding an optimal clustering operator, the Bayes clusterer, that corresponds to the Bayes classifier in classification theory. We provide detailed solutions under Gaussian models. Owing to computational complexity we also develop approximations of the Bayes clusterer.
Fil: Dalton, Lori A.. Ohio State University; Estados Unidos
Fil: Benalcazar Palacios, Marco Enrique. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Mar del Plata. Facultad de Ingeniería; Argentina
Fil: Brun, Marcel. Universidad Nacional de Mar del Plata. Facultad de Ingeniería; Argentina
Fil: Dougherty, Edward R.. Texas A&M University; Estados Unidos - Materia
-
Bayes Classification
Bayesian Estimation
Clustering
Pattern Recognition
Small Samples - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/45678
Ver los metadatos del registro completo
id |
CONICETDig_ca2826e5ae68b5216ced1a5adbdc612a |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/45678 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Analytic Representation of Bayes Labeling and Bayes Clustering Operators for Random Labeled Point ProcessesDalton, Lori A.Benalcazar Palacios, Marco EnriqueBrun, MarcelDougherty, Edward R.Bayes ClassificationBayesian EstimationClusteringPattern RecognitionSmall Sampleshttps://purl.org/becyt/ford/2.2https://purl.org/becyt/ford/2Clustering algorithms typically group points based on some similarity criterion, but without reference to an underlying random process to make clustering algorithms rigorously predictive. In fact, there exists a probabilistic theory of clustering in the context of random labeled point sets in which clustering error is defined in terms of the process. In the present paper, given an underlying point process we develop a general analytic procedure for finding an optimal clustering operator, the Bayes clusterer, that corresponds to the Bayes classifier in classification theory. We provide detailed solutions under Gaussian models. Owing to computational complexity we also develop approximations of the Bayes clusterer.Fil: Dalton, Lori A.. Ohio State University; Estados UnidosFil: Benalcazar Palacios, Marco Enrique. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Mar del Plata. Facultad de Ingeniería; ArgentinaFil: Brun, Marcel. Universidad Nacional de Mar del Plata. Facultad de Ingeniería; ArgentinaFil: Dougherty, Edward R.. Texas A&M University; Estados UnidosInstitute of Electrical and Electronics Engineers2015-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/45678Dalton, Lori A.; Benalcazar Palacios, Marco Enrique; Brun, Marcel; Dougherty, Edward R.; Analytic Representation of Bayes Labeling and Bayes Clustering Operators for Random Labeled Point Processes; Institute of Electrical and Electronics Engineers; IEEE Transactions On Signal Processing; 63; 6; 3-2015; 1605-16201053-5888CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1109/TSP.2015.2399870info:eu-repo/semantics/altIdentifier/url/https://ieeexplore.ieee.org/document/7029715/info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:09:24Zoai:ri.conicet.gov.ar:11336/45678instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:09:24.724CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Analytic Representation of Bayes Labeling and Bayes Clustering Operators for Random Labeled Point Processes |
title |
Analytic Representation of Bayes Labeling and Bayes Clustering Operators for Random Labeled Point Processes |
spellingShingle |
Analytic Representation of Bayes Labeling and Bayes Clustering Operators for Random Labeled Point Processes Dalton, Lori A. Bayes Classification Bayesian Estimation Clustering Pattern Recognition Small Samples |
title_short |
Analytic Representation of Bayes Labeling and Bayes Clustering Operators for Random Labeled Point Processes |
title_full |
Analytic Representation of Bayes Labeling and Bayes Clustering Operators for Random Labeled Point Processes |
title_fullStr |
Analytic Representation of Bayes Labeling and Bayes Clustering Operators for Random Labeled Point Processes |
title_full_unstemmed |
Analytic Representation of Bayes Labeling and Bayes Clustering Operators for Random Labeled Point Processes |
title_sort |
Analytic Representation of Bayes Labeling and Bayes Clustering Operators for Random Labeled Point Processes |
dc.creator.none.fl_str_mv |
Dalton, Lori A. Benalcazar Palacios, Marco Enrique Brun, Marcel Dougherty, Edward R. |
author |
Dalton, Lori A. |
author_facet |
Dalton, Lori A. Benalcazar Palacios, Marco Enrique Brun, Marcel Dougherty, Edward R. |
author_role |
author |
author2 |
Benalcazar Palacios, Marco Enrique Brun, Marcel Dougherty, Edward R. |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
Bayes Classification Bayesian Estimation Clustering Pattern Recognition Small Samples |
topic |
Bayes Classification Bayesian Estimation Clustering Pattern Recognition Small Samples |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.2 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
Clustering algorithms typically group points based on some similarity criterion, but without reference to an underlying random process to make clustering algorithms rigorously predictive. In fact, there exists a probabilistic theory of clustering in the context of random labeled point sets in which clustering error is defined in terms of the process. In the present paper, given an underlying point process we develop a general analytic procedure for finding an optimal clustering operator, the Bayes clusterer, that corresponds to the Bayes classifier in classification theory. We provide detailed solutions under Gaussian models. Owing to computational complexity we also develop approximations of the Bayes clusterer. Fil: Dalton, Lori A.. Ohio State University; Estados Unidos Fil: Benalcazar Palacios, Marco Enrique. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Mar del Plata. Facultad de Ingeniería; Argentina Fil: Brun, Marcel. Universidad Nacional de Mar del Plata. Facultad de Ingeniería; Argentina Fil: Dougherty, Edward R.. Texas A&M University; Estados Unidos |
description |
Clustering algorithms typically group points based on some similarity criterion, but without reference to an underlying random process to make clustering algorithms rigorously predictive. In fact, there exists a probabilistic theory of clustering in the context of random labeled point sets in which clustering error is defined in terms of the process. In the present paper, given an underlying point process we develop a general analytic procedure for finding an optimal clustering operator, the Bayes clusterer, that corresponds to the Bayes classifier in classification theory. We provide detailed solutions under Gaussian models. Owing to computational complexity we also develop approximations of the Bayes clusterer. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015-03 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/45678 Dalton, Lori A.; Benalcazar Palacios, Marco Enrique; Brun, Marcel; Dougherty, Edward R.; Analytic Representation of Bayes Labeling and Bayes Clustering Operators for Random Labeled Point Processes; Institute of Electrical and Electronics Engineers; IEEE Transactions On Signal Processing; 63; 6; 3-2015; 1605-1620 1053-5888 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/45678 |
identifier_str_mv |
Dalton, Lori A.; Benalcazar Palacios, Marco Enrique; Brun, Marcel; Dougherty, Edward R.; Analytic Representation of Bayes Labeling and Bayes Clustering Operators for Random Labeled Point Processes; Institute of Electrical and Electronics Engineers; IEEE Transactions On Signal Processing; 63; 6; 3-2015; 1605-1620 1053-5888 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1109/TSP.2015.2399870 info:eu-repo/semantics/altIdentifier/url/https://ieeexplore.ieee.org/document/7029715/ |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Institute of Electrical and Electronics Engineers |
publisher.none.fl_str_mv |
Institute of Electrical and Electronics Engineers |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842270079353356288 |
score |
13.13397 |