A Steady-state Evolutionary Algorithm for Building Collaborative Learning Teams in Educational Environments Considering the Understanding Levels and Interest Levels of the Students
- Autores
- Yannibelli, Virginia Daniela; Armentano, Marcelo Gabriel; Berdun, Franco Daniel; Amandi, Analia Adriana
- Año de publicación
- 2016
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Collaborative learning team building is a fundamental, difficult and time-consuming task in educational environments. In this paper, we address a collaborative learning team building problem that considers two valuable grouping criteria usually considered by teachers. One of these criteria considers the understanding levels of the students with respect of the topics of a given course, and is based on building well-balanced teams in terms of the understanding levels of their members. The other criterion considers the interest levels of the students with respect of the topics of a given course, and is based on building well-balanced teams in terms of the interest levels of their members. The problem addressed has been recognised as an NP-Hard optimization problem. To solve the problem, we propose a steady-state evolutionary algorithm. This algorithm aims to organize the students taking a given course into teams in such a way that the two grouping criteria of the problem are optimized. The performance of the algorithm is evaluated on nine problem instances with different levels of complexity, and is compared with that of the only algorithm previously proposed for solving the addressed problem. The obtained results show that the steady-state evolutionary algorithm significantly outperforms the previous algorithm.
Fil: Yannibelli, Virginia Daniela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; Argentina
Fil: Armentano, Marcelo Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; Argentina
Fil: Berdun, Franco Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; Argentina
Fil: Amandi, Analia Adriana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; Argentina - Materia
-
COLLABORATIVE LEARNING
COLLABORATIVE LEARNING TEAM BUILDING
EVOLUTIONARY ALGORITHMS
STEADY-STATE EVOLUTIONARY ALGORITHMS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/58497
Ver los metadatos del registro completo
id |
CONICETDig_1e628558ebeb6dfd8719073d1ea1a340 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/58497 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
A Steady-state Evolutionary Algorithm for Building Collaborative Learning Teams in Educational Environments Considering the Understanding Levels and Interest Levels of the StudentsYannibelli, Virginia DanielaArmentano, Marcelo GabrielBerdun, Franco DanielAmandi, Analia AdrianaCOLLABORATIVE LEARNINGCOLLABORATIVE LEARNING TEAM BUILDINGEVOLUTIONARY ALGORITHMSSTEADY-STATE EVOLUTIONARY ALGORITHMShttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1Collaborative learning team building is a fundamental, difficult and time-consuming task in educational environments. In this paper, we address a collaborative learning team building problem that considers two valuable grouping criteria usually considered by teachers. One of these criteria considers the understanding levels of the students with respect of the topics of a given course, and is based on building well-balanced teams in terms of the understanding levels of their members. The other criterion considers the interest levels of the students with respect of the topics of a given course, and is based on building well-balanced teams in terms of the interest levels of their members. The problem addressed has been recognised as an NP-Hard optimization problem. To solve the problem, we propose a steady-state evolutionary algorithm. This algorithm aims to organize the students taking a given course into teams in such a way that the two grouping criteria of the problem are optimized. The performance of the algorithm is evaluated on nine problem instances with different levels of complexity, and is compared with that of the only algorithm previously proposed for solving the addressed problem. The obtained results show that the steady-state evolutionary algorithm significantly outperforms the previous algorithm.Fil: Yannibelli, Virginia Daniela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; ArgentinaFil: Armentano, Marcelo Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; ArgentinaFil: Berdun, Franco Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; ArgentinaFil: Amandi, Analia Adriana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; ArgentinaGraz University of Technology2016-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/58497Yannibelli, Virginia Daniela; Armentano, Marcelo Gabriel; Berdun, Franco Daniel; Amandi, Analia Adriana; A Steady-state Evolutionary Algorithm for Building Collaborative Learning Teams in Educational Environments Considering the Understanding Levels and Interest Levels of the Students; Graz University of Technology; Journal of Universal Computer Science; 22; 10; 10-2016; 1298-13180948-695X0948-6968CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.3217/jucs-022-10-1298info:eu-repo/semantics/altIdentifier/url/http://www.jucs.org/doi?doi=10.3217/jucs-022-10-1298info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:13:34Zoai:ri.conicet.gov.ar:11336/58497instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:13:35.132CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
A Steady-state Evolutionary Algorithm for Building Collaborative Learning Teams in Educational Environments Considering the Understanding Levels and Interest Levels of the Students |
title |
A Steady-state Evolutionary Algorithm for Building Collaborative Learning Teams in Educational Environments Considering the Understanding Levels and Interest Levels of the Students |
spellingShingle |
A Steady-state Evolutionary Algorithm for Building Collaborative Learning Teams in Educational Environments Considering the Understanding Levels and Interest Levels of the Students Yannibelli, Virginia Daniela COLLABORATIVE LEARNING COLLABORATIVE LEARNING TEAM BUILDING EVOLUTIONARY ALGORITHMS STEADY-STATE EVOLUTIONARY ALGORITHMS |
title_short |
A Steady-state Evolutionary Algorithm for Building Collaborative Learning Teams in Educational Environments Considering the Understanding Levels and Interest Levels of the Students |
title_full |
A Steady-state Evolutionary Algorithm for Building Collaborative Learning Teams in Educational Environments Considering the Understanding Levels and Interest Levels of the Students |
title_fullStr |
A Steady-state Evolutionary Algorithm for Building Collaborative Learning Teams in Educational Environments Considering the Understanding Levels and Interest Levels of the Students |
title_full_unstemmed |
A Steady-state Evolutionary Algorithm for Building Collaborative Learning Teams in Educational Environments Considering the Understanding Levels and Interest Levels of the Students |
title_sort |
A Steady-state Evolutionary Algorithm for Building Collaborative Learning Teams in Educational Environments Considering the Understanding Levels and Interest Levels of the Students |
dc.creator.none.fl_str_mv |
Yannibelli, Virginia Daniela Armentano, Marcelo Gabriel Berdun, Franco Daniel Amandi, Analia Adriana |
author |
Yannibelli, Virginia Daniela |
author_facet |
Yannibelli, Virginia Daniela Armentano, Marcelo Gabriel Berdun, Franco Daniel Amandi, Analia Adriana |
author_role |
author |
author2 |
Armentano, Marcelo Gabriel Berdun, Franco Daniel Amandi, Analia Adriana |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
COLLABORATIVE LEARNING COLLABORATIVE LEARNING TEAM BUILDING EVOLUTIONARY ALGORITHMS STEADY-STATE EVOLUTIONARY ALGORITHMS |
topic |
COLLABORATIVE LEARNING COLLABORATIVE LEARNING TEAM BUILDING EVOLUTIONARY ALGORITHMS STEADY-STATE EVOLUTIONARY ALGORITHMS |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.2 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Collaborative learning team building is a fundamental, difficult and time-consuming task in educational environments. In this paper, we address a collaborative learning team building problem that considers two valuable grouping criteria usually considered by teachers. One of these criteria considers the understanding levels of the students with respect of the topics of a given course, and is based on building well-balanced teams in terms of the understanding levels of their members. The other criterion considers the interest levels of the students with respect of the topics of a given course, and is based on building well-balanced teams in terms of the interest levels of their members. The problem addressed has been recognised as an NP-Hard optimization problem. To solve the problem, we propose a steady-state evolutionary algorithm. This algorithm aims to organize the students taking a given course into teams in such a way that the two grouping criteria of the problem are optimized. The performance of the algorithm is evaluated on nine problem instances with different levels of complexity, and is compared with that of the only algorithm previously proposed for solving the addressed problem. The obtained results show that the steady-state evolutionary algorithm significantly outperforms the previous algorithm. Fil: Yannibelli, Virginia Daniela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; Argentina Fil: Armentano, Marcelo Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; Argentina Fil: Berdun, Franco Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; Argentina Fil: Amandi, Analia Adriana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; Argentina |
description |
Collaborative learning team building is a fundamental, difficult and time-consuming task in educational environments. In this paper, we address a collaborative learning team building problem that considers two valuable grouping criteria usually considered by teachers. One of these criteria considers the understanding levels of the students with respect of the topics of a given course, and is based on building well-balanced teams in terms of the understanding levels of their members. The other criterion considers the interest levels of the students with respect of the topics of a given course, and is based on building well-balanced teams in terms of the interest levels of their members. The problem addressed has been recognised as an NP-Hard optimization problem. To solve the problem, we propose a steady-state evolutionary algorithm. This algorithm aims to organize the students taking a given course into teams in such a way that the two grouping criteria of the problem are optimized. The performance of the algorithm is evaluated on nine problem instances with different levels of complexity, and is compared with that of the only algorithm previously proposed for solving the addressed problem. The obtained results show that the steady-state evolutionary algorithm significantly outperforms the previous algorithm. |
publishDate |
2016 |
dc.date.none.fl_str_mv |
2016-10 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/58497 Yannibelli, Virginia Daniela; Armentano, Marcelo Gabriel; Berdun, Franco Daniel; Amandi, Analia Adriana; A Steady-state Evolutionary Algorithm for Building Collaborative Learning Teams in Educational Environments Considering the Understanding Levels and Interest Levels of the Students; Graz University of Technology; Journal of Universal Computer Science; 22; 10; 10-2016; 1298-1318 0948-695X 0948-6968 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/58497 |
identifier_str_mv |
Yannibelli, Virginia Daniela; Armentano, Marcelo Gabriel; Berdun, Franco Daniel; Amandi, Analia Adriana; A Steady-state Evolutionary Algorithm for Building Collaborative Learning Teams in Educational Environments Considering the Understanding Levels and Interest Levels of the Students; Graz University of Technology; Journal of Universal Computer Science; 22; 10; 10-2016; 1298-1318 0948-695X 0948-6968 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.3217/jucs-022-10-1298 info:eu-repo/semantics/altIdentifier/url/http://www.jucs.org/doi?doi=10.3217/jucs-022-10-1298 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Graz University of Technology |
publisher.none.fl_str_mv |
Graz University of Technology |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614053824036864 |
score |
13.070432 |