Collaborative Learning Team Formation Considering Team Roles: An Evolutionary Approach based on Adaptive Crossover, Mutation and Simulated Annealing
- Autores
- Yannibelli, Virginia Daniela; Amandi, Analia Adriana
- Año de publicación
- 2018
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In this paper, a hybrid evolutionary algorithm is proposed to solve a collaborative learning team formation problem in higher education contexts. This problem involves a grouping criterion evaluated satisfactorily in a great variety of higher education courses as well as training programs. This criterion is based on the team roles of students, and implies forming well-balanced teams respecting the team roles of their members. The hybrid evolutionary algorithm uses adaptive crossover, mutation and simulated annealing processes, in order to improve the performance of the evolutionary search. These processes adapt their behavior regarding the state of the evolutionary search. The performance of the hybrid evolutionary algorithm is exhaustively evaluated on data sets with very different complexity levels, and after that, is compared with those of the algorithms previously reported in the literature to solve the addressed problem. The results obtained from the performance comparison indicate that the hybrid evolutionary algorithm significantly outperforms the algorithms previously reported, in both effectiveness and efficiency.
Fil: Yannibelli, Virginia Daniela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; Argentina. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Instituto de Sistemas Tandil; Argentina
Fil: Amandi, Analia Adriana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; Argentina. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Instituto de Sistemas Tandil; Argentina - Materia
-
Collaborative Learning
Collaborative Learning Team Formation
Team Roles
Evolutionary Algorithms
Hybrid Evolutionary Algorithms
Adaptive Evolutionary Algorithms
Simulated Annealing Algorithms - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/87560
Ver los metadatos del registro completo
id |
CONICETDig_10b087090c6f5d7e02539dec74d686f6 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/87560 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Collaborative Learning Team Formation Considering Team Roles: An Evolutionary Approach based on Adaptive Crossover, Mutation and Simulated AnnealingYannibelli, Virginia DanielaAmandi, Analia AdrianaCollaborative LearningCollaborative Learning Team FormationTeam RolesEvolutionary AlgorithmsHybrid Evolutionary AlgorithmsAdaptive Evolutionary AlgorithmsSimulated Annealing Algorithmshttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1In this paper, a hybrid evolutionary algorithm is proposed to solve a collaborative learning team formation problem in higher education contexts. This problem involves a grouping criterion evaluated satisfactorily in a great variety of higher education courses as well as training programs. This criterion is based on the team roles of students, and implies forming well-balanced teams respecting the team roles of their members. The hybrid evolutionary algorithm uses adaptive crossover, mutation and simulated annealing processes, in order to improve the performance of the evolutionary search. These processes adapt their behavior regarding the state of the evolutionary search. The performance of the hybrid evolutionary algorithm is exhaustively evaluated on data sets with very different complexity levels, and after that, is compared with those of the algorithms previously reported in the literature to solve the addressed problem. The results obtained from the performance comparison indicate that the hybrid evolutionary algorithm significantly outperforms the algorithms previously reported, in both effectiveness and efficiency.Fil: Yannibelli, Virginia Daniela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; Argentina. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Instituto de Sistemas Tandil; ArgentinaFil: Amandi, Analia Adriana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; Argentina. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Instituto de Sistemas Tandil; ArgentinaNational Polytechnic Institute2018-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/87560Yannibelli, Virginia Daniela; Amandi, Analia Adriana; Collaborative Learning Team Formation Considering Team Roles: An Evolutionary Approach based on Adaptive Crossover, Mutation and Simulated Annealing; National Polytechnic Institute; Research in Computing Science; 147; 4; 4-2018; 61-741870-4069CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.semanticscholar.org/paper/Collaborative-Learning-Team-Formation-Considering-Yannibelli-Amandi/ebd178576a314862930badd1bef383fc50960e54info:eu-repo/semantics/altIdentifier/url/https://www.rcs.cic.ipn.mx/2018_147_4/info:eu-repo/semantics/altIdentifier/url/https://www.rcs.cic.ipn.mx/2018_147_4/Collaborative%20Learning%20Team%20Formation%20Considering%20Team%20Roles_%20An%20Evolutionary%20Approach.pdfinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:56:00Zoai:ri.conicet.gov.ar:11336/87560instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:56:00.828CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Collaborative Learning Team Formation Considering Team Roles: An Evolutionary Approach based on Adaptive Crossover, Mutation and Simulated Annealing |
title |
Collaborative Learning Team Formation Considering Team Roles: An Evolutionary Approach based on Adaptive Crossover, Mutation and Simulated Annealing |
spellingShingle |
Collaborative Learning Team Formation Considering Team Roles: An Evolutionary Approach based on Adaptive Crossover, Mutation and Simulated Annealing Yannibelli, Virginia Daniela Collaborative Learning Collaborative Learning Team Formation Team Roles Evolutionary Algorithms Hybrid Evolutionary Algorithms Adaptive Evolutionary Algorithms Simulated Annealing Algorithms |
title_short |
Collaborative Learning Team Formation Considering Team Roles: An Evolutionary Approach based on Adaptive Crossover, Mutation and Simulated Annealing |
title_full |
Collaborative Learning Team Formation Considering Team Roles: An Evolutionary Approach based on Adaptive Crossover, Mutation and Simulated Annealing |
title_fullStr |
Collaborative Learning Team Formation Considering Team Roles: An Evolutionary Approach based on Adaptive Crossover, Mutation and Simulated Annealing |
title_full_unstemmed |
Collaborative Learning Team Formation Considering Team Roles: An Evolutionary Approach based on Adaptive Crossover, Mutation and Simulated Annealing |
title_sort |
Collaborative Learning Team Formation Considering Team Roles: An Evolutionary Approach based on Adaptive Crossover, Mutation and Simulated Annealing |
dc.creator.none.fl_str_mv |
Yannibelli, Virginia Daniela Amandi, Analia Adriana |
author |
Yannibelli, Virginia Daniela |
author_facet |
Yannibelli, Virginia Daniela Amandi, Analia Adriana |
author_role |
author |
author2 |
Amandi, Analia Adriana |
author2_role |
author |
dc.subject.none.fl_str_mv |
Collaborative Learning Collaborative Learning Team Formation Team Roles Evolutionary Algorithms Hybrid Evolutionary Algorithms Adaptive Evolutionary Algorithms Simulated Annealing Algorithms |
topic |
Collaborative Learning Collaborative Learning Team Formation Team Roles Evolutionary Algorithms Hybrid Evolutionary Algorithms Adaptive Evolutionary Algorithms Simulated Annealing Algorithms |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.2 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
In this paper, a hybrid evolutionary algorithm is proposed to solve a collaborative learning team formation problem in higher education contexts. This problem involves a grouping criterion evaluated satisfactorily in a great variety of higher education courses as well as training programs. This criterion is based on the team roles of students, and implies forming well-balanced teams respecting the team roles of their members. The hybrid evolutionary algorithm uses adaptive crossover, mutation and simulated annealing processes, in order to improve the performance of the evolutionary search. These processes adapt their behavior regarding the state of the evolutionary search. The performance of the hybrid evolutionary algorithm is exhaustively evaluated on data sets with very different complexity levels, and after that, is compared with those of the algorithms previously reported in the literature to solve the addressed problem. The results obtained from the performance comparison indicate that the hybrid evolutionary algorithm significantly outperforms the algorithms previously reported, in both effectiveness and efficiency. Fil: Yannibelli, Virginia Daniela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; Argentina. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Instituto de Sistemas Tandil; Argentina Fil: Amandi, Analia Adriana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; Argentina. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Instituto de Sistemas Tandil; Argentina |
description |
In this paper, a hybrid evolutionary algorithm is proposed to solve a collaborative learning team formation problem in higher education contexts. This problem involves a grouping criterion evaluated satisfactorily in a great variety of higher education courses as well as training programs. This criterion is based on the team roles of students, and implies forming well-balanced teams respecting the team roles of their members. The hybrid evolutionary algorithm uses adaptive crossover, mutation and simulated annealing processes, in order to improve the performance of the evolutionary search. These processes adapt their behavior regarding the state of the evolutionary search. The performance of the hybrid evolutionary algorithm is exhaustively evaluated on data sets with very different complexity levels, and after that, is compared with those of the algorithms previously reported in the literature to solve the addressed problem. The results obtained from the performance comparison indicate that the hybrid evolutionary algorithm significantly outperforms the algorithms previously reported, in both effectiveness and efficiency. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-04 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/87560 Yannibelli, Virginia Daniela; Amandi, Analia Adriana; Collaborative Learning Team Formation Considering Team Roles: An Evolutionary Approach based on Adaptive Crossover, Mutation and Simulated Annealing; National Polytechnic Institute; Research in Computing Science; 147; 4; 4-2018; 61-74 1870-4069 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/87560 |
identifier_str_mv |
Yannibelli, Virginia Daniela; Amandi, Analia Adriana; Collaborative Learning Team Formation Considering Team Roles: An Evolutionary Approach based on Adaptive Crossover, Mutation and Simulated Annealing; National Polytechnic Institute; Research in Computing Science; 147; 4; 4-2018; 61-74 1870-4069 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.semanticscholar.org/paper/Collaborative-Learning-Team-Formation-Considering-Yannibelli-Amandi/ebd178576a314862930badd1bef383fc50960e54 info:eu-repo/semantics/altIdentifier/url/https://www.rcs.cic.ipn.mx/2018_147_4/ info:eu-repo/semantics/altIdentifier/url/https://www.rcs.cic.ipn.mx/2018_147_4/Collaborative%20Learning%20Team%20Formation%20Considering%20Team%20Roles_%20An%20Evolutionary%20Approach.pdf |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
National Polytechnic Institute |
publisher.none.fl_str_mv |
National Polytechnic Institute |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613684798685184 |
score |
13.070432 |