Notes on gauge fields and discrete series representations in de Sitter spacetimes
- Autores
- Rios Fukelman, Alan; Sempe, Matias Nicolas; Silva, Guillermo Ariel
- Año de publicación
- 2024
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In this note we discuss features of the simplest spinning Discrete Series Unitary Irreducible Representations (UIR) of SO(1,4). These representations are known to be realised in the single particle Hilbert space of a free gauge field propagating in a four dimensional fixed de Sitter background. They showcase distinct features as compared to the more common Principal Series realised by heavy fields. Upon computing the 1 loop Sphere path integral we show that the edge modes of the theory can be understood in terms of a Discrete Series of SO(1, 2). We then canonically quantise the theory and show how group theory constrains the mode decomposition. We further clarify the role played by the second SO(4) Casimir in the single particle Hilbert space of the theory.
Fil: Rios Fukelman, Alan. King’s College London; Reino Unido
Fil: Sempe, Matias Nicolas. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina
Fil: Silva, Guillermo Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina - Materia
-
de Sitter
Representation theory
Gauge fields
Discrete series - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/257342
Ver los metadatos del registro completo
id |
CONICETDig_c0b29938d003847402e423b445d1992a |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/257342 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Notes on gauge fields and discrete series representations in de Sitter spacetimesRios Fukelman, AlanSempe, Matias NicolasSilva, Guillermo Arielde SitterRepresentation theoryGauge fieldsDiscrete serieshttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1In this note we discuss features of the simplest spinning Discrete Series Unitary Irreducible Representations (UIR) of SO(1,4). These representations are known to be realised in the single particle Hilbert space of a free gauge field propagating in a four dimensional fixed de Sitter background. They showcase distinct features as compared to the more common Principal Series realised by heavy fields. Upon computing the 1 loop Sphere path integral we show that the edge modes of the theory can be understood in terms of a Discrete Series of SO(1, 2). We then canonically quantise the theory and show how group theory constrains the mode decomposition. We further clarify the role played by the second SO(4) Casimir in the single particle Hilbert space of the theory.Fil: Rios Fukelman, Alan. King’s College London; Reino UnidoFil: Sempe, Matias Nicolas. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; ArgentinaFil: Silva, Guillermo Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; ArgentinaElsevier2024-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/257342Rios Fukelman, Alan; Sempe, Matias Nicolas; Silva, Guillermo Ariel; Notes on gauge fields and discrete series representations in de Sitter spacetimes; Elsevier; Journal of High Energy Physics; 2024; 1; 1-2024; 1-461029-8479CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://link.springer.com/10.1007/JHEP01(2024)011info:eu-repo/semantics/altIdentifier/doi/10.1007/JHEP01(2024)011info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:08:39Zoai:ri.conicet.gov.ar:11336/257342instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:08:39.6CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Notes on gauge fields and discrete series representations in de Sitter spacetimes |
title |
Notes on gauge fields and discrete series representations in de Sitter spacetimes |
spellingShingle |
Notes on gauge fields and discrete series representations in de Sitter spacetimes Rios Fukelman, Alan de Sitter Representation theory Gauge fields Discrete series |
title_short |
Notes on gauge fields and discrete series representations in de Sitter spacetimes |
title_full |
Notes on gauge fields and discrete series representations in de Sitter spacetimes |
title_fullStr |
Notes on gauge fields and discrete series representations in de Sitter spacetimes |
title_full_unstemmed |
Notes on gauge fields and discrete series representations in de Sitter spacetimes |
title_sort |
Notes on gauge fields and discrete series representations in de Sitter spacetimes |
dc.creator.none.fl_str_mv |
Rios Fukelman, Alan Sempe, Matias Nicolas Silva, Guillermo Ariel |
author |
Rios Fukelman, Alan |
author_facet |
Rios Fukelman, Alan Sempe, Matias Nicolas Silva, Guillermo Ariel |
author_role |
author |
author2 |
Sempe, Matias Nicolas Silva, Guillermo Ariel |
author2_role |
author author |
dc.subject.none.fl_str_mv |
de Sitter Representation theory Gauge fields Discrete series |
topic |
de Sitter Representation theory Gauge fields Discrete series |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
In this note we discuss features of the simplest spinning Discrete Series Unitary Irreducible Representations (UIR) of SO(1,4). These representations are known to be realised in the single particle Hilbert space of a free gauge field propagating in a four dimensional fixed de Sitter background. They showcase distinct features as compared to the more common Principal Series realised by heavy fields. Upon computing the 1 loop Sphere path integral we show that the edge modes of the theory can be understood in terms of a Discrete Series of SO(1, 2). We then canonically quantise the theory and show how group theory constrains the mode decomposition. We further clarify the role played by the second SO(4) Casimir in the single particle Hilbert space of the theory. Fil: Rios Fukelman, Alan. King’s College London; Reino Unido Fil: Sempe, Matias Nicolas. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina Fil: Silva, Guillermo Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina |
description |
In this note we discuss features of the simplest spinning Discrete Series Unitary Irreducible Representations (UIR) of SO(1,4). These representations are known to be realised in the single particle Hilbert space of a free gauge field propagating in a four dimensional fixed de Sitter background. They showcase distinct features as compared to the more common Principal Series realised by heavy fields. Upon computing the 1 loop Sphere path integral we show that the edge modes of the theory can be understood in terms of a Discrete Series of SO(1, 2). We then canonically quantise the theory and show how group theory constrains the mode decomposition. We further clarify the role played by the second SO(4) Casimir in the single particle Hilbert space of the theory. |
publishDate |
2024 |
dc.date.none.fl_str_mv |
2024-01 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/257342 Rios Fukelman, Alan; Sempe, Matias Nicolas; Silva, Guillermo Ariel; Notes on gauge fields and discrete series representations in de Sitter spacetimes; Elsevier; Journal of High Energy Physics; 2024; 1; 1-2024; 1-46 1029-8479 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/257342 |
identifier_str_mv |
Rios Fukelman, Alan; Sempe, Matias Nicolas; Silva, Guillermo Ariel; Notes on gauge fields and discrete series representations in de Sitter spacetimes; Elsevier; Journal of High Energy Physics; 2024; 1; 1-2024; 1-46 1029-8479 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/10.1007/JHEP01(2024)011 info:eu-repo/semantics/altIdentifier/doi/10.1007/JHEP01(2024)011 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613956760502272 |
score |
13.070432 |