Notes on gauge fields and discrete series representations in de Sitter spacetimes

Autores
Rios Fukelman, Alan; Sempe, Matias Nicolas; Silva, Guillermo Ariel
Año de publicación
2024
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
In this note we discuss features of the simplest spinning Discrete Series Unitary Irreducible Representations (UIR) of SO(1,4). These representations are known to be realised in the single particle Hilbert space of a free gauge field propagating in a four dimensional fixed de Sitter background. They showcase distinct features as compared to the more common Principal Series realised by heavy fields. Upon computing the 1 loop Sphere path integral we show that the edge modes of the theory can be understood in terms of a Discrete Series of SO(1, 2). We then canonically quantise the theory and show how group theory constrains the mode decomposition. We further clarify the role played by the second SO(4) Casimir in the single particle Hilbert space of the theory.
Fil: Rios Fukelman, Alan. King’s College London; Reino Unido
Fil: Sempe, Matias Nicolas. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina
Fil: Silva, Guillermo Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina
Materia
de Sitter
Representation theory
Gauge fields
Discrete series
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/257342

id CONICETDig_c0b29938d003847402e423b445d1992a
oai_identifier_str oai:ri.conicet.gov.ar:11336/257342
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Notes on gauge fields and discrete series representations in de Sitter spacetimesRios Fukelman, AlanSempe, Matias NicolasSilva, Guillermo Arielde SitterRepresentation theoryGauge fieldsDiscrete serieshttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1In this note we discuss features of the simplest spinning Discrete Series Unitary Irreducible Representations (UIR) of SO(1,4). These representations are known to be realised in the single particle Hilbert space of a free gauge field propagating in a four dimensional fixed de Sitter background. They showcase distinct features as compared to the more common Principal Series realised by heavy fields. Upon computing the 1 loop Sphere path integral we show that the edge modes of the theory can be understood in terms of a Discrete Series of SO(1, 2). We then canonically quantise the theory and show how group theory constrains the mode decomposition. We further clarify the role played by the second SO(4) Casimir in the single particle Hilbert space of the theory.Fil: Rios Fukelman, Alan. King’s College London; Reino UnidoFil: Sempe, Matias Nicolas. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; ArgentinaFil: Silva, Guillermo Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; ArgentinaElsevier2024-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/257342Rios Fukelman, Alan; Sempe, Matias Nicolas; Silva, Guillermo Ariel; Notes on gauge fields and discrete series representations in de Sitter spacetimes; Elsevier; Journal of High Energy Physics; 2024; 1; 1-2024; 1-461029-8479CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://link.springer.com/10.1007/JHEP01(2024)011info:eu-repo/semantics/altIdentifier/doi/10.1007/JHEP01(2024)011info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:08:39Zoai:ri.conicet.gov.ar:11336/257342instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:08:39.6CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Notes on gauge fields and discrete series representations in de Sitter spacetimes
title Notes on gauge fields and discrete series representations in de Sitter spacetimes
spellingShingle Notes on gauge fields and discrete series representations in de Sitter spacetimes
Rios Fukelman, Alan
de Sitter
Representation theory
Gauge fields
Discrete series
title_short Notes on gauge fields and discrete series representations in de Sitter spacetimes
title_full Notes on gauge fields and discrete series representations in de Sitter spacetimes
title_fullStr Notes on gauge fields and discrete series representations in de Sitter spacetimes
title_full_unstemmed Notes on gauge fields and discrete series representations in de Sitter spacetimes
title_sort Notes on gauge fields and discrete series representations in de Sitter spacetimes
dc.creator.none.fl_str_mv Rios Fukelman, Alan
Sempe, Matias Nicolas
Silva, Guillermo Ariel
author Rios Fukelman, Alan
author_facet Rios Fukelman, Alan
Sempe, Matias Nicolas
Silva, Guillermo Ariel
author_role author
author2 Sempe, Matias Nicolas
Silva, Guillermo Ariel
author2_role author
author
dc.subject.none.fl_str_mv de Sitter
Representation theory
Gauge fields
Discrete series
topic de Sitter
Representation theory
Gauge fields
Discrete series
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv In this note we discuss features of the simplest spinning Discrete Series Unitary Irreducible Representations (UIR) of SO(1,4). These representations are known to be realised in the single particle Hilbert space of a free gauge field propagating in a four dimensional fixed de Sitter background. They showcase distinct features as compared to the more common Principal Series realised by heavy fields. Upon computing the 1 loop Sphere path integral we show that the edge modes of the theory can be understood in terms of a Discrete Series of SO(1, 2). We then canonically quantise the theory and show how group theory constrains the mode decomposition. We further clarify the role played by the second SO(4) Casimir in the single particle Hilbert space of the theory.
Fil: Rios Fukelman, Alan. King’s College London; Reino Unido
Fil: Sempe, Matias Nicolas. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina
Fil: Silva, Guillermo Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina
description In this note we discuss features of the simplest spinning Discrete Series Unitary Irreducible Representations (UIR) of SO(1,4). These representations are known to be realised in the single particle Hilbert space of a free gauge field propagating in a four dimensional fixed de Sitter background. They showcase distinct features as compared to the more common Principal Series realised by heavy fields. Upon computing the 1 loop Sphere path integral we show that the edge modes of the theory can be understood in terms of a Discrete Series of SO(1, 2). We then canonically quantise the theory and show how group theory constrains the mode decomposition. We further clarify the role played by the second SO(4) Casimir in the single particle Hilbert space of the theory.
publishDate 2024
dc.date.none.fl_str_mv 2024-01
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/257342
Rios Fukelman, Alan; Sempe, Matias Nicolas; Silva, Guillermo Ariel; Notes on gauge fields and discrete series representations in de Sitter spacetimes; Elsevier; Journal of High Energy Physics; 2024; 1; 1-2024; 1-46
1029-8479
CONICET Digital
CONICET
url http://hdl.handle.net/11336/257342
identifier_str_mv Rios Fukelman, Alan; Sempe, Matias Nicolas; Silva, Guillermo Ariel; Notes on gauge fields and discrete series representations in de Sitter spacetimes; Elsevier; Journal of High Energy Physics; 2024; 1; 1-2024; 1-46
1029-8479
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/10.1007/JHEP01(2024)011
info:eu-repo/semantics/altIdentifier/doi/10.1007/JHEP01(2024)011
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier
publisher.none.fl_str_mv Elsevier
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613956760502272
score 13.070432