The infant and pubertal human ovary: Balbiani's body-associated VASA expression, immunohistochemical detection of apoptosis-related BCL2 and BAX proteins, and DNA fragmentation

Autores
Albamonte, María Itatí; Albamonte, Mirta S.; Stella, Inés; Zuccardi, Luis; Vitullo, Alfredo Daniel
Año de publicación
2013
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
STUDY QUESTION: How do apoptosis-related BCL2 and BAX genes, known to regulate death or survival of germ cells in fetal and adult life, and germ-cell-specific VASA protein behave from birth to puberty in the human ovary? SUMMARY ANSWER: In resting primordial follicles in both infant and pubertal ovaries, BCL2 family members and germ-cell-specific VASA behave as in fetal life. After birth, once follicles leave the resting reserve to enter the growing follicular pool, detection of apoptosis-related genes moves from the germ cell to granulosa cells and VASA expression is lost. WHAT IS KNOWN ALREADY: In the human ovary, around 85% of the 7 × 106 potential oocytes produced at mid-gestation are lost before birth, an extra 10% before puberty, and loss continues throughout reproductive life until germinal exhaustion of the ovary. Oocyte loss is mainly driven through a balanced expression of BCL2 gene family members. Apoptosis-inducing BAX gene shows a sustained expression throughout fetal and adult life, whereas apoptosis-inhibiting BCL2 is detectable during the proliferative stage of primordial germ cells and oogonia in the fetal ovary and proliferation of granulosa cells in growing follicles in the adult ovary. The germ-cell marker VASA is detectable in the fetal ovary from early oogenesis and is conspicuously expressed in primordial follicles, where in late pregnancy it is associated with the Balbiani's vitelline space. VASA expression is not detectable in the adult ovary. STUDY DESIGN, SIZE, DURATION: This is a qualitative analysis involving infant/pubertal paraffin-embedded human ovaries screened for apoptosis-related proteins, DNA fragmentation and germ-cell identity. PARTICIPANTS/MATERIALS, SETTING, METHODS: Ovaries from 13 patients ranging in age from 4 to 16 years, undergoing gynaecological surgical procedures due to benign pathology, were studied. Tissues were fixed in 10% formalin, paraffin-embedded and processed for immunohistochemistry to screen the temporal and cellular localization of germ-cell-specific VASA protein and BCL2 and BAX apoptosis-related proteins. In addition, a terminal deoxynucleotidyl transferase-mediated deoxiuridinetriphosphate nick-end labelling (TUNEL) assay was performed to detect DNA fragmentation. General histology and tissue integrity were assessed by haematoxylin–eosin staining. MAIN RESULTS AND THE ROLE OF CHANCE: VASA showed a differential pattern of expression; in the resting primordial follicle reserve in infant and pubertal ovaries, it was associated with the Balbiani's body space in the germ cell. VASA remained detectable in primary follicles leaving the resting reserve, but once follicles entered the growing pool it became undetectable. This pattern of VASA expression is the same as in the fetal ovary. BAX was expressed both in the resting primordial reserve and in the pool of growing follicles, whereas BCL2 was detected only in granulosa cells in antral follicles in the growing pool. Apoptosis-related protein expression moved from the germ cell to the somatic stratum when primordial follicles left the resting reserve to enter the pool of growing follicles, irrespective of female age. Most TUNEL-positive cells were detected in the granulosa cells of antral follicles. No TUNEL-positive cells were found in resting primordial follicles. LIMITATIONS, REASONS FOR CAUTION: The study was limited by the qualitative nature of the immuno-histochemical analysis and the TUNEL assay. The results neither quantify the levels of germ-cell death nor exclude other concurrent cell death mechanisms that could act in the regulation of female germ-cell number. WIDER IMPLICATIONS OF THE FINDING: This study provides missing knowledge about apoptosis and germ-cell-specific VASA expression in the human ovary between birth and puberty and the participation of BCL2 and BAX genes in the balance between death and survival throughout female germ-line development. Intracellular localization of VASA in resting follicles emerges as a possible marker with prognostic value that needs further investigation, especially in infant patients entering ovarian cryo-preservation programmes. This knowledge will be valuable in optimizing the rescue and clinical use of germ cells to restore fertility in women. STUDY FUNDING/COMPETING INTEREST(S): No external funding was obtained for this study. The authors have no conflicts of interest to declare. TRIAL REGISTRATION NUMBER: Not applicable.
Fil: Albamonte, María Itatí. Universidad Maimónides. Área de Investigaciones Biomédicas y Biotecnológicas. Centro de Estudios Biomédicos, Biotecnológicos, Ambientales y de Diagnóstico; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Albamonte, Mirta S.. Universidad Maimónides. Área de Investigaciones Biomédicas y Biotecnológicas. Centro de Estudios Biomédicos, Biotecnológicos, Ambientales y de Diagnóstico; Argentina
Fil: Stella, Inés. Universidad Maimónides. Área de Investigaciones Biomédicas y Biotecnológicas. Centro de Estudios Biomédicos, Biotecnológicos, Ambientales y de Diagnóstico; Argentina
Fil: Zuccardi, Luis. Gobierno de la Ciudad de Buenos Aires. Hospital General de Niños "Ricardo Gutiérrez"; Argentina
Fil: Vitullo, Alfredo Daniel. Universidad Maimónides. Área de Investigaciones Biomédicas y Biotecnológicas. Centro de Estudios Biomédicos, Biotecnológicos, Ambientales y de Diagnóstico; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Materia
Human Infant Ovary
Vasa
Bcl2
Bax
Tunel
Apoptosis
Balbiani'S Body
Ovarian Reserve
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/23965

id CONICETDig_1deeba878af1bed0fcf7a74141626be6
oai_identifier_str oai:ri.conicet.gov.ar:11336/23965
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling The infant and pubertal human ovary: Balbiani's body-associated VASA expression, immunohistochemical detection of apoptosis-related BCL2 and BAX proteins, and DNA fragmentationAlbamonte, María ItatíAlbamonte, Mirta S.Stella, InésZuccardi, LuisVitullo, Alfredo DanielHuman Infant OvaryVasaBcl2BaxTunelApoptosisBalbiani'S BodyOvarian Reservehttps://purl.org/becyt/ford/1.6https://purl.org/becyt/ford/1STUDY QUESTION: How do apoptosis-related BCL2 and BAX genes, known to regulate death or survival of germ cells in fetal and adult life, and germ-cell-specific VASA protein behave from birth to puberty in the human ovary? SUMMARY ANSWER: In resting primordial follicles in both infant and pubertal ovaries, BCL2 family members and germ-cell-specific VASA behave as in fetal life. After birth, once follicles leave the resting reserve to enter the growing follicular pool, detection of apoptosis-related genes moves from the germ cell to granulosa cells and VASA expression is lost. WHAT IS KNOWN ALREADY: In the human ovary, around 85% of the 7 × 106 potential oocytes produced at mid-gestation are lost before birth, an extra 10% before puberty, and loss continues throughout reproductive life until germinal exhaustion of the ovary. Oocyte loss is mainly driven through a balanced expression of BCL2 gene family members. Apoptosis-inducing BAX gene shows a sustained expression throughout fetal and adult life, whereas apoptosis-inhibiting BCL2 is detectable during the proliferative stage of primordial germ cells and oogonia in the fetal ovary and proliferation of granulosa cells in growing follicles in the adult ovary. The germ-cell marker VASA is detectable in the fetal ovary from early oogenesis and is conspicuously expressed in primordial follicles, where in late pregnancy it is associated with the Balbiani's vitelline space. VASA expression is not detectable in the adult ovary. STUDY DESIGN, SIZE, DURATION: This is a qualitative analysis involving infant/pubertal paraffin-embedded human ovaries screened for apoptosis-related proteins, DNA fragmentation and germ-cell identity. PARTICIPANTS/MATERIALS, SETTING, METHODS: Ovaries from 13 patients ranging in age from 4 to 16 years, undergoing gynaecological surgical procedures due to benign pathology, were studied. Tissues were fixed in 10% formalin, paraffin-embedded and processed for immunohistochemistry to screen the temporal and cellular localization of germ-cell-specific VASA protein and BCL2 and BAX apoptosis-related proteins. In addition, a terminal deoxynucleotidyl transferase-mediated deoxiuridinetriphosphate nick-end labelling (TUNEL) assay was performed to detect DNA fragmentation. General histology and tissue integrity were assessed by haematoxylin–eosin staining. MAIN RESULTS AND THE ROLE OF CHANCE: VASA showed a differential pattern of expression; in the resting primordial follicle reserve in infant and pubertal ovaries, it was associated with the Balbiani's body space in the germ cell. VASA remained detectable in primary follicles leaving the resting reserve, but once follicles entered the growing pool it became undetectable. This pattern of VASA expression is the same as in the fetal ovary. BAX was expressed both in the resting primordial reserve and in the pool of growing follicles, whereas BCL2 was detected only in granulosa cells in antral follicles in the growing pool. Apoptosis-related protein expression moved from the germ cell to the somatic stratum when primordial follicles left the resting reserve to enter the pool of growing follicles, irrespective of female age. Most TUNEL-positive cells were detected in the granulosa cells of antral follicles. No TUNEL-positive cells were found in resting primordial follicles. LIMITATIONS, REASONS FOR CAUTION: The study was limited by the qualitative nature of the immuno-histochemical analysis and the TUNEL assay. The results neither quantify the levels of germ-cell death nor exclude other concurrent cell death mechanisms that could act in the regulation of female germ-cell number. WIDER IMPLICATIONS OF THE FINDING: This study provides missing knowledge about apoptosis and germ-cell-specific VASA expression in the human ovary between birth and puberty and the participation of BCL2 and BAX genes in the balance between death and survival throughout female germ-line development. Intracellular localization of VASA in resting follicles emerges as a possible marker with prognostic value that needs further investigation, especially in infant patients entering ovarian cryo-preservation programmes. This knowledge will be valuable in optimizing the rescue and clinical use of germ cells to restore fertility in women. STUDY FUNDING/COMPETING INTEREST(S): No external funding was obtained for this study. The authors have no conflicts of interest to declare. TRIAL REGISTRATION NUMBER: Not applicable.Fil: Albamonte, María Itatí. Universidad Maimónides. Área de Investigaciones Biomédicas y Biotecnológicas. Centro de Estudios Biomédicos, Biotecnológicos, Ambientales y de Diagnóstico; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Albamonte, Mirta S.. Universidad Maimónides. Área de Investigaciones Biomédicas y Biotecnológicas. Centro de Estudios Biomédicos, Biotecnológicos, Ambientales y de Diagnóstico; ArgentinaFil: Stella, Inés. Universidad Maimónides. Área de Investigaciones Biomédicas y Biotecnológicas. Centro de Estudios Biomédicos, Biotecnológicos, Ambientales y de Diagnóstico; ArgentinaFil: Zuccardi, Luis. Gobierno de la Ciudad de Buenos Aires. Hospital General de Niños "Ricardo Gutiérrez"; ArgentinaFil: Vitullo, Alfredo Daniel. Universidad Maimónides. Área de Investigaciones Biomédicas y Biotecnológicas. Centro de Estudios Biomédicos, Biotecnológicos, Ambientales y de Diagnóstico; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaOxford University Press2013-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/23965Albamonte, María Itatí; Albamonte, Mirta S.; Stella, Inés; Zuccardi, Luis; Vitullo, Alfredo Daniel; The infant and pubertal human ovary: Balbiani's body-associated VASA expression, immunohistochemical detection of apoptosis-related BCL2 and BAX proteins, and DNA fragmentation; Oxford University Press; Human Reproduction; 28; 3; 3-2013; 698-7060268-1161CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://academic.oup.com/humrep/article-lookup/doi/10.1093/humrep/des453info:eu-repo/semantics/altIdentifier/doi/10.1093/humrep/des453info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:02:12Zoai:ri.conicet.gov.ar:11336/23965instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:02:12.729CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv The infant and pubertal human ovary: Balbiani's body-associated VASA expression, immunohistochemical detection of apoptosis-related BCL2 and BAX proteins, and DNA fragmentation
title The infant and pubertal human ovary: Balbiani's body-associated VASA expression, immunohistochemical detection of apoptosis-related BCL2 and BAX proteins, and DNA fragmentation
spellingShingle The infant and pubertal human ovary: Balbiani's body-associated VASA expression, immunohistochemical detection of apoptosis-related BCL2 and BAX proteins, and DNA fragmentation
Albamonte, María Itatí
Human Infant Ovary
Vasa
Bcl2
Bax
Tunel
Apoptosis
Balbiani'S Body
Ovarian Reserve
title_short The infant and pubertal human ovary: Balbiani's body-associated VASA expression, immunohistochemical detection of apoptosis-related BCL2 and BAX proteins, and DNA fragmentation
title_full The infant and pubertal human ovary: Balbiani's body-associated VASA expression, immunohistochemical detection of apoptosis-related BCL2 and BAX proteins, and DNA fragmentation
title_fullStr The infant and pubertal human ovary: Balbiani's body-associated VASA expression, immunohistochemical detection of apoptosis-related BCL2 and BAX proteins, and DNA fragmentation
title_full_unstemmed The infant and pubertal human ovary: Balbiani's body-associated VASA expression, immunohistochemical detection of apoptosis-related BCL2 and BAX proteins, and DNA fragmentation
title_sort The infant and pubertal human ovary: Balbiani's body-associated VASA expression, immunohistochemical detection of apoptosis-related BCL2 and BAX proteins, and DNA fragmentation
dc.creator.none.fl_str_mv Albamonte, María Itatí
Albamonte, Mirta S.
Stella, Inés
Zuccardi, Luis
Vitullo, Alfredo Daniel
author Albamonte, María Itatí
author_facet Albamonte, María Itatí
Albamonte, Mirta S.
Stella, Inés
Zuccardi, Luis
Vitullo, Alfredo Daniel
author_role author
author2 Albamonte, Mirta S.
Stella, Inés
Zuccardi, Luis
Vitullo, Alfredo Daniel
author2_role author
author
author
author
dc.subject.none.fl_str_mv Human Infant Ovary
Vasa
Bcl2
Bax
Tunel
Apoptosis
Balbiani'S Body
Ovarian Reserve
topic Human Infant Ovary
Vasa
Bcl2
Bax
Tunel
Apoptosis
Balbiani'S Body
Ovarian Reserve
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.6
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv STUDY QUESTION: How do apoptosis-related BCL2 and BAX genes, known to regulate death or survival of germ cells in fetal and adult life, and germ-cell-specific VASA protein behave from birth to puberty in the human ovary? SUMMARY ANSWER: In resting primordial follicles in both infant and pubertal ovaries, BCL2 family members and germ-cell-specific VASA behave as in fetal life. After birth, once follicles leave the resting reserve to enter the growing follicular pool, detection of apoptosis-related genes moves from the germ cell to granulosa cells and VASA expression is lost. WHAT IS KNOWN ALREADY: In the human ovary, around 85% of the 7 × 106 potential oocytes produced at mid-gestation are lost before birth, an extra 10% before puberty, and loss continues throughout reproductive life until germinal exhaustion of the ovary. Oocyte loss is mainly driven through a balanced expression of BCL2 gene family members. Apoptosis-inducing BAX gene shows a sustained expression throughout fetal and adult life, whereas apoptosis-inhibiting BCL2 is detectable during the proliferative stage of primordial germ cells and oogonia in the fetal ovary and proliferation of granulosa cells in growing follicles in the adult ovary. The germ-cell marker VASA is detectable in the fetal ovary from early oogenesis and is conspicuously expressed in primordial follicles, where in late pregnancy it is associated with the Balbiani's vitelline space. VASA expression is not detectable in the adult ovary. STUDY DESIGN, SIZE, DURATION: This is a qualitative analysis involving infant/pubertal paraffin-embedded human ovaries screened for apoptosis-related proteins, DNA fragmentation and germ-cell identity. PARTICIPANTS/MATERIALS, SETTING, METHODS: Ovaries from 13 patients ranging in age from 4 to 16 years, undergoing gynaecological surgical procedures due to benign pathology, were studied. Tissues were fixed in 10% formalin, paraffin-embedded and processed for immunohistochemistry to screen the temporal and cellular localization of germ-cell-specific VASA protein and BCL2 and BAX apoptosis-related proteins. In addition, a terminal deoxynucleotidyl transferase-mediated deoxiuridinetriphosphate nick-end labelling (TUNEL) assay was performed to detect DNA fragmentation. General histology and tissue integrity were assessed by haematoxylin–eosin staining. MAIN RESULTS AND THE ROLE OF CHANCE: VASA showed a differential pattern of expression; in the resting primordial follicle reserve in infant and pubertal ovaries, it was associated with the Balbiani's body space in the germ cell. VASA remained detectable in primary follicles leaving the resting reserve, but once follicles entered the growing pool it became undetectable. This pattern of VASA expression is the same as in the fetal ovary. BAX was expressed both in the resting primordial reserve and in the pool of growing follicles, whereas BCL2 was detected only in granulosa cells in antral follicles in the growing pool. Apoptosis-related protein expression moved from the germ cell to the somatic stratum when primordial follicles left the resting reserve to enter the pool of growing follicles, irrespective of female age. Most TUNEL-positive cells were detected in the granulosa cells of antral follicles. No TUNEL-positive cells were found in resting primordial follicles. LIMITATIONS, REASONS FOR CAUTION: The study was limited by the qualitative nature of the immuno-histochemical analysis and the TUNEL assay. The results neither quantify the levels of germ-cell death nor exclude other concurrent cell death mechanisms that could act in the regulation of female germ-cell number. WIDER IMPLICATIONS OF THE FINDING: This study provides missing knowledge about apoptosis and germ-cell-specific VASA expression in the human ovary between birth and puberty and the participation of BCL2 and BAX genes in the balance between death and survival throughout female germ-line development. Intracellular localization of VASA in resting follicles emerges as a possible marker with prognostic value that needs further investigation, especially in infant patients entering ovarian cryo-preservation programmes. This knowledge will be valuable in optimizing the rescue and clinical use of germ cells to restore fertility in women. STUDY FUNDING/COMPETING INTEREST(S): No external funding was obtained for this study. The authors have no conflicts of interest to declare. TRIAL REGISTRATION NUMBER: Not applicable.
Fil: Albamonte, María Itatí. Universidad Maimónides. Área de Investigaciones Biomédicas y Biotecnológicas. Centro de Estudios Biomédicos, Biotecnológicos, Ambientales y de Diagnóstico; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Albamonte, Mirta S.. Universidad Maimónides. Área de Investigaciones Biomédicas y Biotecnológicas. Centro de Estudios Biomédicos, Biotecnológicos, Ambientales y de Diagnóstico; Argentina
Fil: Stella, Inés. Universidad Maimónides. Área de Investigaciones Biomédicas y Biotecnológicas. Centro de Estudios Biomédicos, Biotecnológicos, Ambientales y de Diagnóstico; Argentina
Fil: Zuccardi, Luis. Gobierno de la Ciudad de Buenos Aires. Hospital General de Niños "Ricardo Gutiérrez"; Argentina
Fil: Vitullo, Alfredo Daniel. Universidad Maimónides. Área de Investigaciones Biomédicas y Biotecnológicas. Centro de Estudios Biomédicos, Biotecnológicos, Ambientales y de Diagnóstico; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
description STUDY QUESTION: How do apoptosis-related BCL2 and BAX genes, known to regulate death or survival of germ cells in fetal and adult life, and germ-cell-specific VASA protein behave from birth to puberty in the human ovary? SUMMARY ANSWER: In resting primordial follicles in both infant and pubertal ovaries, BCL2 family members and germ-cell-specific VASA behave as in fetal life. After birth, once follicles leave the resting reserve to enter the growing follicular pool, detection of apoptosis-related genes moves from the germ cell to granulosa cells and VASA expression is lost. WHAT IS KNOWN ALREADY: In the human ovary, around 85% of the 7 × 106 potential oocytes produced at mid-gestation are lost before birth, an extra 10% before puberty, and loss continues throughout reproductive life until germinal exhaustion of the ovary. Oocyte loss is mainly driven through a balanced expression of BCL2 gene family members. Apoptosis-inducing BAX gene shows a sustained expression throughout fetal and adult life, whereas apoptosis-inhibiting BCL2 is detectable during the proliferative stage of primordial germ cells and oogonia in the fetal ovary and proliferation of granulosa cells in growing follicles in the adult ovary. The germ-cell marker VASA is detectable in the fetal ovary from early oogenesis and is conspicuously expressed in primordial follicles, where in late pregnancy it is associated with the Balbiani's vitelline space. VASA expression is not detectable in the adult ovary. STUDY DESIGN, SIZE, DURATION: This is a qualitative analysis involving infant/pubertal paraffin-embedded human ovaries screened for apoptosis-related proteins, DNA fragmentation and germ-cell identity. PARTICIPANTS/MATERIALS, SETTING, METHODS: Ovaries from 13 patients ranging in age from 4 to 16 years, undergoing gynaecological surgical procedures due to benign pathology, were studied. Tissues were fixed in 10% formalin, paraffin-embedded and processed for immunohistochemistry to screen the temporal and cellular localization of germ-cell-specific VASA protein and BCL2 and BAX apoptosis-related proteins. In addition, a terminal deoxynucleotidyl transferase-mediated deoxiuridinetriphosphate nick-end labelling (TUNEL) assay was performed to detect DNA fragmentation. General histology and tissue integrity were assessed by haematoxylin–eosin staining. MAIN RESULTS AND THE ROLE OF CHANCE: VASA showed a differential pattern of expression; in the resting primordial follicle reserve in infant and pubertal ovaries, it was associated with the Balbiani's body space in the germ cell. VASA remained detectable in primary follicles leaving the resting reserve, but once follicles entered the growing pool it became undetectable. This pattern of VASA expression is the same as in the fetal ovary. BAX was expressed both in the resting primordial reserve and in the pool of growing follicles, whereas BCL2 was detected only in granulosa cells in antral follicles in the growing pool. Apoptosis-related protein expression moved from the germ cell to the somatic stratum when primordial follicles left the resting reserve to enter the pool of growing follicles, irrespective of female age. Most TUNEL-positive cells were detected in the granulosa cells of antral follicles. No TUNEL-positive cells were found in resting primordial follicles. LIMITATIONS, REASONS FOR CAUTION: The study was limited by the qualitative nature of the immuno-histochemical analysis and the TUNEL assay. The results neither quantify the levels of germ-cell death nor exclude other concurrent cell death mechanisms that could act in the regulation of female germ-cell number. WIDER IMPLICATIONS OF THE FINDING: This study provides missing knowledge about apoptosis and germ-cell-specific VASA expression in the human ovary between birth and puberty and the participation of BCL2 and BAX genes in the balance between death and survival throughout female germ-line development. Intracellular localization of VASA in resting follicles emerges as a possible marker with prognostic value that needs further investigation, especially in infant patients entering ovarian cryo-preservation programmes. This knowledge will be valuable in optimizing the rescue and clinical use of germ cells to restore fertility in women. STUDY FUNDING/COMPETING INTEREST(S): No external funding was obtained for this study. The authors have no conflicts of interest to declare. TRIAL REGISTRATION NUMBER: Not applicable.
publishDate 2013
dc.date.none.fl_str_mv 2013-03
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/23965
Albamonte, María Itatí; Albamonte, Mirta S.; Stella, Inés; Zuccardi, Luis; Vitullo, Alfredo Daniel; The infant and pubertal human ovary: Balbiani's body-associated VASA expression, immunohistochemical detection of apoptosis-related BCL2 and BAX proteins, and DNA fragmentation; Oxford University Press; Human Reproduction; 28; 3; 3-2013; 698-706
0268-1161
CONICET Digital
CONICET
url http://hdl.handle.net/11336/23965
identifier_str_mv Albamonte, María Itatí; Albamonte, Mirta S.; Stella, Inés; Zuccardi, Luis; Vitullo, Alfredo Daniel; The infant and pubertal human ovary: Balbiani's body-associated VASA expression, immunohistochemical detection of apoptosis-related BCL2 and BAX proteins, and DNA fragmentation; Oxford University Press; Human Reproduction; 28; 3; 3-2013; 698-706
0268-1161
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://academic.oup.com/humrep/article-lookup/doi/10.1093/humrep/des453
info:eu-repo/semantics/altIdentifier/doi/10.1093/humrep/des453
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Oxford University Press
publisher.none.fl_str_mv Oxford University Press
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842269743893970944
score 13.13397