The jamming constant of uniform random graphs

Autores
Bermolen, Paola; Jonckheere, Matthieu Thimothy Samson; Moyal, Pascal
Año de publicación
2017
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
By constructing jointly a random graph and an associated exploration process, we define the dynamics of a “parking process” on a class of uniform random graphs as a measure-valued Markov process, representing the empirical degree distribution of non-explored nodes. We then establish a functional law of large numbers for this process as the number of vertices grows to infinity, allowing us to assess the jamming constant of the considered random graphs, i.e. the size of the maximal independent set discovered by the exploration algorithm. This technique, which can be applied to any uniform random graph with a given–possibly unbounded–degree distribution, can be seen as a generalization in the space of measures, of the differential equation method introduced by Wormald.
Fil: Bermolen, Paola. Universidad de la República; Uruguay
Fil: Jonckheere, Matthieu Thimothy Samson. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Fil: Moyal, Pascal. Northwestern University; Estados Unidos. Universite de Technologie de Compiegne; Francia
Materia
CONFIGURATION MODEL
HYDRODYNAMIC LIMIT
MEASURE-VALUED MARKOV PROCESS
PARKING PROCESS
RANDOM GRAPH
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/55577

id CONICETDig_1dbb3b90c1ce9f4c22d7a10203a6f130
oai_identifier_str oai:ri.conicet.gov.ar:11336/55577
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling The jamming constant of uniform random graphsBermolen, PaolaJonckheere, Matthieu Thimothy SamsonMoyal, PascalCONFIGURATION MODELHYDRODYNAMIC LIMITMEASURE-VALUED MARKOV PROCESSPARKING PROCESSRANDOM GRAPHhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1By constructing jointly a random graph and an associated exploration process, we define the dynamics of a “parking process” on a class of uniform random graphs as a measure-valued Markov process, representing the empirical degree distribution of non-explored nodes. We then establish a functional law of large numbers for this process as the number of vertices grows to infinity, allowing us to assess the jamming constant of the considered random graphs, i.e. the size of the maximal independent set discovered by the exploration algorithm. This technique, which can be applied to any uniform random graph with a given–possibly unbounded–degree distribution, can be seen as a generalization in the space of measures, of the differential equation method introduced by Wormald.Fil: Bermolen, Paola. Universidad de la República; UruguayFil: Jonckheere, Matthieu Thimothy Samson. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaFil: Moyal, Pascal. Northwestern University; Estados Unidos. Universite de Technologie de Compiegne; FranciaElsevier Science2017-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/55577Bermolen, Paola; Jonckheere, Matthieu Thimothy Samson; Moyal, Pascal; The jamming constant of uniform random graphs; Elsevier Science; Stochastic Processes And Their Applications; 127; 7; 7-2017; 2138-21780304-4149CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.spa.2016.10.005info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0304414916301806info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:35:17Zoai:ri.conicet.gov.ar:11336/55577instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:35:17.799CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv The jamming constant of uniform random graphs
title The jamming constant of uniform random graphs
spellingShingle The jamming constant of uniform random graphs
Bermolen, Paola
CONFIGURATION MODEL
HYDRODYNAMIC LIMIT
MEASURE-VALUED MARKOV PROCESS
PARKING PROCESS
RANDOM GRAPH
title_short The jamming constant of uniform random graphs
title_full The jamming constant of uniform random graphs
title_fullStr The jamming constant of uniform random graphs
title_full_unstemmed The jamming constant of uniform random graphs
title_sort The jamming constant of uniform random graphs
dc.creator.none.fl_str_mv Bermolen, Paola
Jonckheere, Matthieu Thimothy Samson
Moyal, Pascal
author Bermolen, Paola
author_facet Bermolen, Paola
Jonckheere, Matthieu Thimothy Samson
Moyal, Pascal
author_role author
author2 Jonckheere, Matthieu Thimothy Samson
Moyal, Pascal
author2_role author
author
dc.subject.none.fl_str_mv CONFIGURATION MODEL
HYDRODYNAMIC LIMIT
MEASURE-VALUED MARKOV PROCESS
PARKING PROCESS
RANDOM GRAPH
topic CONFIGURATION MODEL
HYDRODYNAMIC LIMIT
MEASURE-VALUED MARKOV PROCESS
PARKING PROCESS
RANDOM GRAPH
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv By constructing jointly a random graph and an associated exploration process, we define the dynamics of a “parking process” on a class of uniform random graphs as a measure-valued Markov process, representing the empirical degree distribution of non-explored nodes. We then establish a functional law of large numbers for this process as the number of vertices grows to infinity, allowing us to assess the jamming constant of the considered random graphs, i.e. the size of the maximal independent set discovered by the exploration algorithm. This technique, which can be applied to any uniform random graph with a given–possibly unbounded–degree distribution, can be seen as a generalization in the space of measures, of the differential equation method introduced by Wormald.
Fil: Bermolen, Paola. Universidad de la República; Uruguay
Fil: Jonckheere, Matthieu Thimothy Samson. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Fil: Moyal, Pascal. Northwestern University; Estados Unidos. Universite de Technologie de Compiegne; Francia
description By constructing jointly a random graph and an associated exploration process, we define the dynamics of a “parking process” on a class of uniform random graphs as a measure-valued Markov process, representing the empirical degree distribution of non-explored nodes. We then establish a functional law of large numbers for this process as the number of vertices grows to infinity, allowing us to assess the jamming constant of the considered random graphs, i.e. the size of the maximal independent set discovered by the exploration algorithm. This technique, which can be applied to any uniform random graph with a given–possibly unbounded–degree distribution, can be seen as a generalization in the space of measures, of the differential equation method introduced by Wormald.
publishDate 2017
dc.date.none.fl_str_mv 2017-07
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/55577
Bermolen, Paola; Jonckheere, Matthieu Thimothy Samson; Moyal, Pascal; The jamming constant of uniform random graphs; Elsevier Science; Stochastic Processes And Their Applications; 127; 7; 7-2017; 2138-2178
0304-4149
CONICET Digital
CONICET
url http://hdl.handle.net/11336/55577
identifier_str_mv Bermolen, Paola; Jonckheere, Matthieu Thimothy Samson; Moyal, Pascal; The jamming constant of uniform random graphs; Elsevier Science; Stochastic Processes And Their Applications; 127; 7; 7-2017; 2138-2178
0304-4149
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1016/j.spa.2016.10.005
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0304414916301806
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier Science
publisher.none.fl_str_mv Elsevier Science
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613098138238976
score 13.070432