Compression-based regularization with an application to multitask learning
- Autores
- Vera, Matías Alejandro; Rey Vega, Leonardo Javier; Piantanida, Pablo
- Año de publicación
- 2018
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- This paper investigates, from information theoretic grounds, a learning problem based on the principle that any regularity in a given dataset can be exploited to extract compact features from data, i.e., using fewer bits than needed to fully describe the data itself, in order to build meaningful representations of a relevant content (multiple labels). We begin studying a multitask learning (MTL) problem from the average (over the tasks) of misclassification probability point of view and linking it with the popular cross-entropy criterion. Our approach allows an information theoretic formulation of an MTL problem as a supervised learning framework, in which the prediction models for several related tasks are learned jointly from common representations to achieve better generalization performance. More precisely, our formulation of the MTL problem can be interpreted as an information bottleneck problem with side information at the decoder. Based on that, we present an iterative algorithm for computing the optimal tradeoffs and some of its convergence properties are studied. An important feature of this algorithm is to provide a natural safeguard against overfitting, because it minimizes the average risk taking into account a penalization induced by the model complexity. Remarkably, empirical results illustrate that there exists an optimal information rate minimizing the excess risk, which depends on the nature and the amount of available training data. Applications to hierarchical text categorization and distributional word clusters are also investigated, extending previous works.
Fil: Vera, Matías Alejandro. Universidad de Buenos Aires. Facultad de Ingeniería. Departamento de Electronica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Rey Vega, Leonardo Javier. Universidad de Buenos Aires. Facultad de Ingeniería. Departamento de Electronica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Centro de Simulación Computacional para Aplicaciones Tecnológicas; Argentina
Fil: Piantanida, Pablo. Université Paris Sud; Francia. Centre National de la Recherche Scientifique; Francia - Materia
-
ARIMOTO-BLAHUT ALGORITHM
INFORMATION BOTTLENECK
MULTITASK LEARNING
REGULARIZATION
SIDE INFORMATION - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/88736
Ver los metadatos del registro completo
id |
CONICETDig_1b5c99383b170ed7fa3b5af3e3eb0ec4 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/88736 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Compression-based regularization with an application to multitask learningVera, Matías AlejandroRey Vega, Leonardo JavierPiantanida, PabloARIMOTO-BLAHUT ALGORITHMINFORMATION BOTTLENECKMULTITASK LEARNINGREGULARIZATIONSIDE INFORMATIONhttps://purl.org/becyt/ford/2.2https://purl.org/becyt/ford/2This paper investigates, from information theoretic grounds, a learning problem based on the principle that any regularity in a given dataset can be exploited to extract compact features from data, i.e., using fewer bits than needed to fully describe the data itself, in order to build meaningful representations of a relevant content (multiple labels). We begin studying a multitask learning (MTL) problem from the average (over the tasks) of misclassification probability point of view and linking it with the popular cross-entropy criterion. Our approach allows an information theoretic formulation of an MTL problem as a supervised learning framework, in which the prediction models for several related tasks are learned jointly from common representations to achieve better generalization performance. More precisely, our formulation of the MTL problem can be interpreted as an information bottleneck problem with side information at the decoder. Based on that, we present an iterative algorithm for computing the optimal tradeoffs and some of its convergence properties are studied. An important feature of this algorithm is to provide a natural safeguard against overfitting, because it minimizes the average risk taking into account a penalization induced by the model complexity. Remarkably, empirical results illustrate that there exists an optimal information rate minimizing the excess risk, which depends on the nature and the amount of available training data. Applications to hierarchical text categorization and distributional word clusters are also investigated, extending previous works.Fil: Vera, Matías Alejandro. Universidad de Buenos Aires. Facultad de Ingeniería. Departamento de Electronica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Rey Vega, Leonardo Javier. Universidad de Buenos Aires. Facultad de Ingeniería. Departamento de Electronica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Centro de Simulación Computacional para Aplicaciones Tecnológicas; ArgentinaFil: Piantanida, Pablo. Université Paris Sud; Francia. Centre National de la Recherche Scientifique; FranciaInstitute of Electrical and Electronics Engineers2018-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/88736Vera, Matías Alejandro; Rey Vega, Leonardo Javier; Piantanida, Pablo; Compression-based regularization with an application to multitask learning; Institute of Electrical and Electronics Engineers; Ieee Journal Of Selected Topics In Signal Processing; 12; 5; 10-2018; 1063-10761932-4553CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://ieeexplore.ieee.org/document/8379424info:eu-repo/semantics/altIdentifier/doi/10.1109/JSTSP.2018.2846218info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T14:46:43Zoai:ri.conicet.gov.ar:11336/88736instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 14:46:43.673CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Compression-based regularization with an application to multitask learning |
title |
Compression-based regularization with an application to multitask learning |
spellingShingle |
Compression-based regularization with an application to multitask learning Vera, Matías Alejandro ARIMOTO-BLAHUT ALGORITHM INFORMATION BOTTLENECK MULTITASK LEARNING REGULARIZATION SIDE INFORMATION |
title_short |
Compression-based regularization with an application to multitask learning |
title_full |
Compression-based regularization with an application to multitask learning |
title_fullStr |
Compression-based regularization with an application to multitask learning |
title_full_unstemmed |
Compression-based regularization with an application to multitask learning |
title_sort |
Compression-based regularization with an application to multitask learning |
dc.creator.none.fl_str_mv |
Vera, Matías Alejandro Rey Vega, Leonardo Javier Piantanida, Pablo |
author |
Vera, Matías Alejandro |
author_facet |
Vera, Matías Alejandro Rey Vega, Leonardo Javier Piantanida, Pablo |
author_role |
author |
author2 |
Rey Vega, Leonardo Javier Piantanida, Pablo |
author2_role |
author author |
dc.subject.none.fl_str_mv |
ARIMOTO-BLAHUT ALGORITHM INFORMATION BOTTLENECK MULTITASK LEARNING REGULARIZATION SIDE INFORMATION |
topic |
ARIMOTO-BLAHUT ALGORITHM INFORMATION BOTTLENECK MULTITASK LEARNING REGULARIZATION SIDE INFORMATION |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.2 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
This paper investigates, from information theoretic grounds, a learning problem based on the principle that any regularity in a given dataset can be exploited to extract compact features from data, i.e., using fewer bits than needed to fully describe the data itself, in order to build meaningful representations of a relevant content (multiple labels). We begin studying a multitask learning (MTL) problem from the average (over the tasks) of misclassification probability point of view and linking it with the popular cross-entropy criterion. Our approach allows an information theoretic formulation of an MTL problem as a supervised learning framework, in which the prediction models for several related tasks are learned jointly from common representations to achieve better generalization performance. More precisely, our formulation of the MTL problem can be interpreted as an information bottleneck problem with side information at the decoder. Based on that, we present an iterative algorithm for computing the optimal tradeoffs and some of its convergence properties are studied. An important feature of this algorithm is to provide a natural safeguard against overfitting, because it minimizes the average risk taking into account a penalization induced by the model complexity. Remarkably, empirical results illustrate that there exists an optimal information rate minimizing the excess risk, which depends on the nature and the amount of available training data. Applications to hierarchical text categorization and distributional word clusters are also investigated, extending previous works. Fil: Vera, Matías Alejandro. Universidad de Buenos Aires. Facultad de Ingeniería. Departamento de Electronica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Rey Vega, Leonardo Javier. Universidad de Buenos Aires. Facultad de Ingeniería. Departamento de Electronica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Centro de Simulación Computacional para Aplicaciones Tecnológicas; Argentina Fil: Piantanida, Pablo. Université Paris Sud; Francia. Centre National de la Recherche Scientifique; Francia |
description |
This paper investigates, from information theoretic grounds, a learning problem based on the principle that any regularity in a given dataset can be exploited to extract compact features from data, i.e., using fewer bits than needed to fully describe the data itself, in order to build meaningful representations of a relevant content (multiple labels). We begin studying a multitask learning (MTL) problem from the average (over the tasks) of misclassification probability point of view and linking it with the popular cross-entropy criterion. Our approach allows an information theoretic formulation of an MTL problem as a supervised learning framework, in which the prediction models for several related tasks are learned jointly from common representations to achieve better generalization performance. More precisely, our formulation of the MTL problem can be interpreted as an information bottleneck problem with side information at the decoder. Based on that, we present an iterative algorithm for computing the optimal tradeoffs and some of its convergence properties are studied. An important feature of this algorithm is to provide a natural safeguard against overfitting, because it minimizes the average risk taking into account a penalization induced by the model complexity. Remarkably, empirical results illustrate that there exists an optimal information rate minimizing the excess risk, which depends on the nature and the amount of available training data. Applications to hierarchical text categorization and distributional word clusters are also investigated, extending previous works. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-10 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/88736 Vera, Matías Alejandro; Rey Vega, Leonardo Javier; Piantanida, Pablo; Compression-based regularization with an application to multitask learning; Institute of Electrical and Electronics Engineers; Ieee Journal Of Selected Topics In Signal Processing; 12; 5; 10-2018; 1063-1076 1932-4553 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/88736 |
identifier_str_mv |
Vera, Matías Alejandro; Rey Vega, Leonardo Javier; Piantanida, Pablo; Compression-based regularization with an application to multitask learning; Institute of Electrical and Electronics Engineers; Ieee Journal Of Selected Topics In Signal Processing; 12; 5; 10-2018; 1063-1076 1932-4553 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://ieeexplore.ieee.org/document/8379424 info:eu-repo/semantics/altIdentifier/doi/10.1109/JSTSP.2018.2846218 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Institute of Electrical and Electronics Engineers |
publisher.none.fl_str_mv |
Institute of Electrical and Electronics Engineers |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846082981336186880 |
score |
13.22299 |