Scale invariance and related properties of q-Gaussian systems
- Autores
- Vignat, Christophe; Plastino, Ángel Luis
- Año de publicación
- 2007
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We advance scale-invariance arguments for systems that are governed (or approximated) by a q-Gaussian distribution, i.e., a power law distribution with exponent Q = 1 / ( 1 − q ) ; q ∈ R . The ensuing line of reasoning is then compared with that applying for Gaussian distributions, with emphasis on dimensional considerations. In particular, a Gaussian system may be part of a larger system that is not Gaussian, but, if the larger system is spherically invariant, then it is necessarily Gaussian again. We show that this result extends to q-Gaussian systems via elliptic invariance. The problem of estimating the appropriate value for the Tsallis' parameter q is revisited. A kinetic application is also provided.
Facultad de Ciencias Exactas - Materia
-
Física
Scale invariance
Elliptical invariance
q-Gaussian distributions
Super-statistics - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by/4.0/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/130601
Ver los metadatos del registro completo
id |
SEDICI_a5d9488a9ec7f47a9557f1a613b4a51b |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/130601 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
Scale invariance and related properties of q-Gaussian systemsVignat, ChristophePlastino, Ángel LuisFísicaScale invarianceElliptical invarianceq-Gaussian distributionsSuper-statisticsWe advance scale-invariance arguments for systems that are governed (or approximated) by a q-Gaussian distribution, i.e., a power law distribution with exponent Q = 1 / ( 1 − q ) ; q ∈ R . The ensuing line of reasoning is then compared with that applying for Gaussian distributions, with emphasis on dimensional considerations. In particular, a Gaussian system may be part of a larger system that is not Gaussian, but, if the larger system is spherically invariant, then it is necessarily Gaussian again. We show that this result extends to q-Gaussian systems via elliptic invariance. The problem of estimating the appropriate value for the Tsallis' parameter q is revisited. A kinetic application is also provided.Facultad de Ciencias Exactas2007info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdf370-375http://sedici.unlp.edu.ar/handle/10915/130601enginfo:eu-repo/semantics/altIdentifier/issn/0375-9601info:eu-repo/semantics/altIdentifier/arxiv/cond-mat/0612393info:eu-repo/semantics/altIdentifier/doi/10.1016/j.physleta.2007.02.003info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/4.0/Creative Commons Attribution 4.0 International (CC BY 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T11:31:17Zoai:sedici.unlp.edu.ar:10915/130601Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 11:31:17.807SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
Scale invariance and related properties of q-Gaussian systems |
title |
Scale invariance and related properties of q-Gaussian systems |
spellingShingle |
Scale invariance and related properties of q-Gaussian systems Vignat, Christophe Física Scale invariance Elliptical invariance q-Gaussian distributions Super-statistics |
title_short |
Scale invariance and related properties of q-Gaussian systems |
title_full |
Scale invariance and related properties of q-Gaussian systems |
title_fullStr |
Scale invariance and related properties of q-Gaussian systems |
title_full_unstemmed |
Scale invariance and related properties of q-Gaussian systems |
title_sort |
Scale invariance and related properties of q-Gaussian systems |
dc.creator.none.fl_str_mv |
Vignat, Christophe Plastino, Ángel Luis |
author |
Vignat, Christophe |
author_facet |
Vignat, Christophe Plastino, Ángel Luis |
author_role |
author |
author2 |
Plastino, Ángel Luis |
author2_role |
author |
dc.subject.none.fl_str_mv |
Física Scale invariance Elliptical invariance q-Gaussian distributions Super-statistics |
topic |
Física Scale invariance Elliptical invariance q-Gaussian distributions Super-statistics |
dc.description.none.fl_txt_mv |
We advance scale-invariance arguments for systems that are governed (or approximated) by a q-Gaussian distribution, i.e., a power law distribution with exponent Q = 1 / ( 1 − q ) ; q ∈ R . The ensuing line of reasoning is then compared with that applying for Gaussian distributions, with emphasis on dimensional considerations. In particular, a Gaussian system may be part of a larger system that is not Gaussian, but, if the larger system is spherically invariant, then it is necessarily Gaussian again. We show that this result extends to q-Gaussian systems via elliptic invariance. The problem of estimating the appropriate value for the Tsallis' parameter q is revisited. A kinetic application is also provided. Facultad de Ciencias Exactas |
description |
We advance scale-invariance arguments for systems that are governed (or approximated) by a q-Gaussian distribution, i.e., a power law distribution with exponent Q = 1 / ( 1 − q ) ; q ∈ R . The ensuing line of reasoning is then compared with that applying for Gaussian distributions, with emphasis on dimensional considerations. In particular, a Gaussian system may be part of a larger system that is not Gaussian, but, if the larger system is spherically invariant, then it is necessarily Gaussian again. We show that this result extends to q-Gaussian systems via elliptic invariance. The problem of estimating the appropriate value for the Tsallis' parameter q is revisited. A kinetic application is also provided. |
publishDate |
2007 |
dc.date.none.fl_str_mv |
2007 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion Articulo http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/130601 |
url |
http://sedici.unlp.edu.ar/handle/10915/130601 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/issn/0375-9601 info:eu-repo/semantics/altIdentifier/arxiv/cond-mat/0612393 info:eu-repo/semantics/altIdentifier/doi/10.1016/j.physleta.2007.02.003 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/4.0/ Creative Commons Attribution 4.0 International (CC BY 4.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by/4.0/ Creative Commons Attribution 4.0 International (CC BY 4.0) |
dc.format.none.fl_str_mv |
application/pdf 370-375 |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1844616192736624640 |
score |
13.070432 |