Robust Estimates in Balanced Norms for Singularly Perturbed Reaction Diffusion Equations Using Graded Meshes

Autores
Armentano, Maria Gabriela; Lombardi, Ariel Luis; Penessi, Cecilia
Año de publicación
2023
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The goal of this paper is to provide almost robust approximations of singularly perturbed reaction-diffusion equations in two dimensions by using finite elements on graded meshes. When the mesh grading parameter is appropriately chosen, we obtain quasioptimal error estimations in a balanced norm for piecewise bilinear elements, by using a weighted variational formulation of the problem introduced by N. Madden and M. Stynes, Calcolo 58(2) 2021. We also prove a supercloseness result, namely, that the difference between the finite element solution and the Lagrange interpolation of the exact solution, in the weighted balanced norm, is of higher order than the error itself. We finish the work with numerical examples which show the good performance of our approach.
Fil: Armentano, Maria Gabriela. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Fil: Lombardi, Ariel Luis. Universidad Nacional de Rosario. Facultad de Ciencias Exactas Ingeniería y Agrimensura. Escuela de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina
Fil: Penessi, Cecilia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina. Universidad Nacional de Rosario. Facultad de Ciencias Exactas Ingeniería y Agrimensura. Escuela de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina
Materia
BALANCED NORMS
GRADED MESHES
REACTION DIFFUSION PROBLEMS
SINGULARLY PERTURBED PROBLEMS
SUPERCLOSENESS
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/223105

id CONICETDig_1a6400a8243f85b46800b6e280cec66c
oai_identifier_str oai:ri.conicet.gov.ar:11336/223105
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Robust Estimates in Balanced Norms for Singularly Perturbed Reaction Diffusion Equations Using Graded MeshesArmentano, Maria GabrielaLombardi, Ariel LuisPenessi, CeciliaBALANCED NORMSGRADED MESHESREACTION DIFFUSION PROBLEMSSINGULARLY PERTURBED PROBLEMSSUPERCLOSENESShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1The goal of this paper is to provide almost robust approximations of singularly perturbed reaction-diffusion equations in two dimensions by using finite elements on graded meshes. When the mesh grading parameter is appropriately chosen, we obtain quasioptimal error estimations in a balanced norm for piecewise bilinear elements, by using a weighted variational formulation of the problem introduced by N. Madden and M. Stynes, Calcolo 58(2) 2021. We also prove a supercloseness result, namely, that the difference between the finite element solution and the Lagrange interpolation of the exact solution, in the weighted balanced norm, is of higher order than the error itself. We finish the work with numerical examples which show the good performance of our approach.Fil: Armentano, Maria Gabriela. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaFil: Lombardi, Ariel Luis. Universidad Nacional de Rosario. Facultad de Ciencias Exactas Ingeniería y Agrimensura. Escuela de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; ArgentinaFil: Penessi, Cecilia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina. Universidad Nacional de Rosario. Facultad de Ciencias Exactas Ingeniería y Agrimensura. Escuela de Ciencias Exactas y Naturales. Departamento de Matemática; ArgentinaSpringer/Plenum Publishers2023-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/223105Armentano, Maria Gabriela; Lombardi, Ariel Luis; Penessi, Cecilia; Robust Estimates in Balanced Norms for Singularly Perturbed Reaction Diffusion Equations Using Graded Meshes; Springer/Plenum Publishers; Journal Of Scientific Computing; 96; 1; 7-2023; 1-340885-7474CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://link.springer.com/10.1007/s10915-023-02245-yinfo:eu-repo/semantics/altIdentifier/doi/10.1007/s10915-023-02245-yinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:34:56Zoai:ri.conicet.gov.ar:11336/223105instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:34:57.104CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Robust Estimates in Balanced Norms for Singularly Perturbed Reaction Diffusion Equations Using Graded Meshes
title Robust Estimates in Balanced Norms for Singularly Perturbed Reaction Diffusion Equations Using Graded Meshes
spellingShingle Robust Estimates in Balanced Norms for Singularly Perturbed Reaction Diffusion Equations Using Graded Meshes
Armentano, Maria Gabriela
BALANCED NORMS
GRADED MESHES
REACTION DIFFUSION PROBLEMS
SINGULARLY PERTURBED PROBLEMS
SUPERCLOSENESS
title_short Robust Estimates in Balanced Norms for Singularly Perturbed Reaction Diffusion Equations Using Graded Meshes
title_full Robust Estimates in Balanced Norms for Singularly Perturbed Reaction Diffusion Equations Using Graded Meshes
title_fullStr Robust Estimates in Balanced Norms for Singularly Perturbed Reaction Diffusion Equations Using Graded Meshes
title_full_unstemmed Robust Estimates in Balanced Norms for Singularly Perturbed Reaction Diffusion Equations Using Graded Meshes
title_sort Robust Estimates in Balanced Norms for Singularly Perturbed Reaction Diffusion Equations Using Graded Meshes
dc.creator.none.fl_str_mv Armentano, Maria Gabriela
Lombardi, Ariel Luis
Penessi, Cecilia
author Armentano, Maria Gabriela
author_facet Armentano, Maria Gabriela
Lombardi, Ariel Luis
Penessi, Cecilia
author_role author
author2 Lombardi, Ariel Luis
Penessi, Cecilia
author2_role author
author
dc.subject.none.fl_str_mv BALANCED NORMS
GRADED MESHES
REACTION DIFFUSION PROBLEMS
SINGULARLY PERTURBED PROBLEMS
SUPERCLOSENESS
topic BALANCED NORMS
GRADED MESHES
REACTION DIFFUSION PROBLEMS
SINGULARLY PERTURBED PROBLEMS
SUPERCLOSENESS
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv The goal of this paper is to provide almost robust approximations of singularly perturbed reaction-diffusion equations in two dimensions by using finite elements on graded meshes. When the mesh grading parameter is appropriately chosen, we obtain quasioptimal error estimations in a balanced norm for piecewise bilinear elements, by using a weighted variational formulation of the problem introduced by N. Madden and M. Stynes, Calcolo 58(2) 2021. We also prove a supercloseness result, namely, that the difference between the finite element solution and the Lagrange interpolation of the exact solution, in the weighted balanced norm, is of higher order than the error itself. We finish the work with numerical examples which show the good performance of our approach.
Fil: Armentano, Maria Gabriela. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Fil: Lombardi, Ariel Luis. Universidad Nacional de Rosario. Facultad de Ciencias Exactas Ingeniería y Agrimensura. Escuela de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina
Fil: Penessi, Cecilia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina. Universidad Nacional de Rosario. Facultad de Ciencias Exactas Ingeniería y Agrimensura. Escuela de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina
description The goal of this paper is to provide almost robust approximations of singularly perturbed reaction-diffusion equations in two dimensions by using finite elements on graded meshes. When the mesh grading parameter is appropriately chosen, we obtain quasioptimal error estimations in a balanced norm for piecewise bilinear elements, by using a weighted variational formulation of the problem introduced by N. Madden and M. Stynes, Calcolo 58(2) 2021. We also prove a supercloseness result, namely, that the difference between the finite element solution and the Lagrange interpolation of the exact solution, in the weighted balanced norm, is of higher order than the error itself. We finish the work with numerical examples which show the good performance of our approach.
publishDate 2023
dc.date.none.fl_str_mv 2023-07
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/223105
Armentano, Maria Gabriela; Lombardi, Ariel Luis; Penessi, Cecilia; Robust Estimates in Balanced Norms for Singularly Perturbed Reaction Diffusion Equations Using Graded Meshes; Springer/Plenum Publishers; Journal Of Scientific Computing; 96; 1; 7-2023; 1-34
0885-7474
CONICET Digital
CONICET
url http://hdl.handle.net/11336/223105
identifier_str_mv Armentano, Maria Gabriela; Lombardi, Ariel Luis; Penessi, Cecilia; Robust Estimates in Balanced Norms for Singularly Perturbed Reaction Diffusion Equations Using Graded Meshes; Springer/Plenum Publishers; Journal Of Scientific Computing; 96; 1; 7-2023; 1-34
0885-7474
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/10.1007/s10915-023-02245-y
info:eu-repo/semantics/altIdentifier/doi/10.1007/s10915-023-02245-y
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Springer/Plenum Publishers
publisher.none.fl_str_mv Springer/Plenum Publishers
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614366809292800
score 13.070432