Robust Estimates in Balanced Norms for Singularly Perturbed Reaction Diffusion Equations Using Graded Meshes
- Autores
- Armentano, Maria Gabriela; Lombardi, Ariel Luis; Penessi, Cecilia
- Año de publicación
- 2023
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The goal of this paper is to provide almost robust approximations of singularly perturbed reaction-diffusion equations in two dimensions by using finite elements on graded meshes. When the mesh grading parameter is appropriately chosen, we obtain quasioptimal error estimations in a balanced norm for piecewise bilinear elements, by using a weighted variational formulation of the problem introduced by N. Madden and M. Stynes, Calcolo 58(2) 2021. We also prove a supercloseness result, namely, that the difference between the finite element solution and the Lagrange interpolation of the exact solution, in the weighted balanced norm, is of higher order than the error itself. We finish the work with numerical examples which show the good performance of our approach.
Fil: Armentano, Maria Gabriela. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Fil: Lombardi, Ariel Luis. Universidad Nacional de Rosario. Facultad de Ciencias Exactas Ingeniería y Agrimensura. Escuela de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina
Fil: Penessi, Cecilia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina. Universidad Nacional de Rosario. Facultad de Ciencias Exactas Ingeniería y Agrimensura. Escuela de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina - Materia
-
BALANCED NORMS
GRADED MESHES
REACTION DIFFUSION PROBLEMS
SINGULARLY PERTURBED PROBLEMS
SUPERCLOSENESS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/223105
Ver los metadatos del registro completo
id |
CONICETDig_1a6400a8243f85b46800b6e280cec66c |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/223105 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Robust Estimates in Balanced Norms for Singularly Perturbed Reaction Diffusion Equations Using Graded MeshesArmentano, Maria GabrielaLombardi, Ariel LuisPenessi, CeciliaBALANCED NORMSGRADED MESHESREACTION DIFFUSION PROBLEMSSINGULARLY PERTURBED PROBLEMSSUPERCLOSENESShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1The goal of this paper is to provide almost robust approximations of singularly perturbed reaction-diffusion equations in two dimensions by using finite elements on graded meshes. When the mesh grading parameter is appropriately chosen, we obtain quasioptimal error estimations in a balanced norm for piecewise bilinear elements, by using a weighted variational formulation of the problem introduced by N. Madden and M. Stynes, Calcolo 58(2) 2021. We also prove a supercloseness result, namely, that the difference between the finite element solution and the Lagrange interpolation of the exact solution, in the weighted balanced norm, is of higher order than the error itself. We finish the work with numerical examples which show the good performance of our approach.Fil: Armentano, Maria Gabriela. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaFil: Lombardi, Ariel Luis. Universidad Nacional de Rosario. Facultad de Ciencias Exactas Ingeniería y Agrimensura. Escuela de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; ArgentinaFil: Penessi, Cecilia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina. Universidad Nacional de Rosario. Facultad de Ciencias Exactas Ingeniería y Agrimensura. Escuela de Ciencias Exactas y Naturales. Departamento de Matemática; ArgentinaSpringer/Plenum Publishers2023-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/223105Armentano, Maria Gabriela; Lombardi, Ariel Luis; Penessi, Cecilia; Robust Estimates in Balanced Norms for Singularly Perturbed Reaction Diffusion Equations Using Graded Meshes; Springer/Plenum Publishers; Journal Of Scientific Computing; 96; 1; 7-2023; 1-340885-7474CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://link.springer.com/10.1007/s10915-023-02245-yinfo:eu-repo/semantics/altIdentifier/doi/10.1007/s10915-023-02245-yinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:34:56Zoai:ri.conicet.gov.ar:11336/223105instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:34:57.104CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Robust Estimates in Balanced Norms for Singularly Perturbed Reaction Diffusion Equations Using Graded Meshes |
title |
Robust Estimates in Balanced Norms for Singularly Perturbed Reaction Diffusion Equations Using Graded Meshes |
spellingShingle |
Robust Estimates in Balanced Norms for Singularly Perturbed Reaction Diffusion Equations Using Graded Meshes Armentano, Maria Gabriela BALANCED NORMS GRADED MESHES REACTION DIFFUSION PROBLEMS SINGULARLY PERTURBED PROBLEMS SUPERCLOSENESS |
title_short |
Robust Estimates in Balanced Norms for Singularly Perturbed Reaction Diffusion Equations Using Graded Meshes |
title_full |
Robust Estimates in Balanced Norms for Singularly Perturbed Reaction Diffusion Equations Using Graded Meshes |
title_fullStr |
Robust Estimates in Balanced Norms for Singularly Perturbed Reaction Diffusion Equations Using Graded Meshes |
title_full_unstemmed |
Robust Estimates in Balanced Norms for Singularly Perturbed Reaction Diffusion Equations Using Graded Meshes |
title_sort |
Robust Estimates in Balanced Norms for Singularly Perturbed Reaction Diffusion Equations Using Graded Meshes |
dc.creator.none.fl_str_mv |
Armentano, Maria Gabriela Lombardi, Ariel Luis Penessi, Cecilia |
author |
Armentano, Maria Gabriela |
author_facet |
Armentano, Maria Gabriela Lombardi, Ariel Luis Penessi, Cecilia |
author_role |
author |
author2 |
Lombardi, Ariel Luis Penessi, Cecilia |
author2_role |
author author |
dc.subject.none.fl_str_mv |
BALANCED NORMS GRADED MESHES REACTION DIFFUSION PROBLEMS SINGULARLY PERTURBED PROBLEMS SUPERCLOSENESS |
topic |
BALANCED NORMS GRADED MESHES REACTION DIFFUSION PROBLEMS SINGULARLY PERTURBED PROBLEMS SUPERCLOSENESS |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
The goal of this paper is to provide almost robust approximations of singularly perturbed reaction-diffusion equations in two dimensions by using finite elements on graded meshes. When the mesh grading parameter is appropriately chosen, we obtain quasioptimal error estimations in a balanced norm for piecewise bilinear elements, by using a weighted variational formulation of the problem introduced by N. Madden and M. Stynes, Calcolo 58(2) 2021. We also prove a supercloseness result, namely, that the difference between the finite element solution and the Lagrange interpolation of the exact solution, in the weighted balanced norm, is of higher order than the error itself. We finish the work with numerical examples which show the good performance of our approach. Fil: Armentano, Maria Gabriela. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina Fil: Lombardi, Ariel Luis. Universidad Nacional de Rosario. Facultad de Ciencias Exactas Ingeniería y Agrimensura. Escuela de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina Fil: Penessi, Cecilia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina. Universidad Nacional de Rosario. Facultad de Ciencias Exactas Ingeniería y Agrimensura. Escuela de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina |
description |
The goal of this paper is to provide almost robust approximations of singularly perturbed reaction-diffusion equations in two dimensions by using finite elements on graded meshes. When the mesh grading parameter is appropriately chosen, we obtain quasioptimal error estimations in a balanced norm for piecewise bilinear elements, by using a weighted variational formulation of the problem introduced by N. Madden and M. Stynes, Calcolo 58(2) 2021. We also prove a supercloseness result, namely, that the difference between the finite element solution and the Lagrange interpolation of the exact solution, in the weighted balanced norm, is of higher order than the error itself. We finish the work with numerical examples which show the good performance of our approach. |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-07 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/223105 Armentano, Maria Gabriela; Lombardi, Ariel Luis; Penessi, Cecilia; Robust Estimates in Balanced Norms for Singularly Perturbed Reaction Diffusion Equations Using Graded Meshes; Springer/Plenum Publishers; Journal Of Scientific Computing; 96; 1; 7-2023; 1-34 0885-7474 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/223105 |
identifier_str_mv |
Armentano, Maria Gabriela; Lombardi, Ariel Luis; Penessi, Cecilia; Robust Estimates in Balanced Norms for Singularly Perturbed Reaction Diffusion Equations Using Graded Meshes; Springer/Plenum Publishers; Journal Of Scientific Computing; 96; 1; 7-2023; 1-34 0885-7474 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/10.1007/s10915-023-02245-y info:eu-repo/semantics/altIdentifier/doi/10.1007/s10915-023-02245-y |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Springer/Plenum Publishers |
publisher.none.fl_str_mv |
Springer/Plenum Publishers |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614366809292800 |
score |
13.070432 |