Varieties of complexes and foliations

Autores
Cukierman, Fernando Miguel
Año de publicación
2014
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Let F(r, d) denote the moduli space of algebraic foliations of codimension one and degree d in complex projective space of dimension r. We show that F(r, d) may be represented as a certain linear section of a variety of complexes. From this fact we obtain information on the irreducible components of F(r, d).
Fil: Cukierman, Fernando Miguel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Materia
complejos
foliaciones
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/18908

id CONICETDig_1a4f385a43c3a51d18cdf85f6a288aa1
oai_identifier_str oai:ri.conicet.gov.ar:11336/18908
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Varieties of complexes and foliationsCukierman, Fernando Miguelcomplejosfoliacioneshttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Let F(r, d) denote the moduli space of algebraic foliations of codimension one and degree d in complex projective space of dimension r. We show that F(r, d) may be represented as a certain linear section of a variety of complexes. From this fact we obtain information on the irreducible components of F(r, d).Fil: Cukierman, Fernando Miguel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaWorldwide Center of Mathematics2014-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/18908Cukierman, Fernando Miguel; Varieties of complexes and foliations; Worldwide Center of Mathematics; Journal of Singularities; 9; 10-2014; 56-671949-2006CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://www.journalofsing.org/volume9/cukierman.pdfinfo:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1111.5514info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:44:31Zoai:ri.conicet.gov.ar:11336/18908instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:44:32.298CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Varieties of complexes and foliations
title Varieties of complexes and foliations
spellingShingle Varieties of complexes and foliations
Cukierman, Fernando Miguel
complejos
foliaciones
title_short Varieties of complexes and foliations
title_full Varieties of complexes and foliations
title_fullStr Varieties of complexes and foliations
title_full_unstemmed Varieties of complexes and foliations
title_sort Varieties of complexes and foliations
dc.creator.none.fl_str_mv Cukierman, Fernando Miguel
author Cukierman, Fernando Miguel
author_facet Cukierman, Fernando Miguel
author_role author
dc.subject.none.fl_str_mv complejos
foliaciones
topic complejos
foliaciones
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Let F(r, d) denote the moduli space of algebraic foliations of codimension one and degree d in complex projective space of dimension r. We show that F(r, d) may be represented as a certain linear section of a variety of complexes. From this fact we obtain information on the irreducible components of F(r, d).
Fil: Cukierman, Fernando Miguel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
description Let F(r, d) denote the moduli space of algebraic foliations of codimension one and degree d in complex projective space of dimension r. We show that F(r, d) may be represented as a certain linear section of a variety of complexes. From this fact we obtain information on the irreducible components of F(r, d).
publishDate 2014
dc.date.none.fl_str_mv 2014-10
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/18908
Cukierman, Fernando Miguel; Varieties of complexes and foliations; Worldwide Center of Mathematics; Journal of Singularities; 9; 10-2014; 56-67
1949-2006
CONICET Digital
CONICET
url http://hdl.handle.net/11336/18908
identifier_str_mv Cukierman, Fernando Miguel; Varieties of complexes and foliations; Worldwide Center of Mathematics; Journal of Singularities; 9; 10-2014; 56-67
1949-2006
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://www.journalofsing.org/volume9/cukierman.pdf
info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1111.5514
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Worldwide Center of Mathematics
publisher.none.fl_str_mv Worldwide Center of Mathematics
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614483385778176
score 13.070432