Varieties of complexes and foliations
- Autores
- Cukierman, Fernando Miguel
- Año de publicación
- 2014
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Let F(r, d) denote the moduli space of algebraic foliations of codimension one and degree d in complex projective space of dimension r. We show that F(r, d) may be represented as a certain linear section of a variety of complexes. From this fact we obtain information on the irreducible components of F(r, d).
Fil: Cukierman, Fernando Miguel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina - Materia
-
complejos
foliaciones - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/18908
Ver los metadatos del registro completo
id |
CONICETDig_1a4f385a43c3a51d18cdf85f6a288aa1 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/18908 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Varieties of complexes and foliationsCukierman, Fernando Miguelcomplejosfoliacioneshttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Let F(r, d) denote the moduli space of algebraic foliations of codimension one and degree d in complex projective space of dimension r. We show that F(r, d) may be represented as a certain linear section of a variety of complexes. From this fact we obtain information on the irreducible components of F(r, d).Fil: Cukierman, Fernando Miguel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaWorldwide Center of Mathematics2014-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/18908Cukierman, Fernando Miguel; Varieties of complexes and foliations; Worldwide Center of Mathematics; Journal of Singularities; 9; 10-2014; 56-671949-2006CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://www.journalofsing.org/volume9/cukierman.pdfinfo:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1111.5514info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:44:31Zoai:ri.conicet.gov.ar:11336/18908instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:44:32.298CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Varieties of complexes and foliations |
title |
Varieties of complexes and foliations |
spellingShingle |
Varieties of complexes and foliations Cukierman, Fernando Miguel complejos foliaciones |
title_short |
Varieties of complexes and foliations |
title_full |
Varieties of complexes and foliations |
title_fullStr |
Varieties of complexes and foliations |
title_full_unstemmed |
Varieties of complexes and foliations |
title_sort |
Varieties of complexes and foliations |
dc.creator.none.fl_str_mv |
Cukierman, Fernando Miguel |
author |
Cukierman, Fernando Miguel |
author_facet |
Cukierman, Fernando Miguel |
author_role |
author |
dc.subject.none.fl_str_mv |
complejos foliaciones |
topic |
complejos foliaciones |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Let F(r, d) denote the moduli space of algebraic foliations of codimension one and degree d in complex projective space of dimension r. We show that F(r, d) may be represented as a certain linear section of a variety of complexes. From this fact we obtain information on the irreducible components of F(r, d). Fil: Cukierman, Fernando Miguel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina |
description |
Let F(r, d) denote the moduli space of algebraic foliations of codimension one and degree d in complex projective space of dimension r. We show that F(r, d) may be represented as a certain linear section of a variety of complexes. From this fact we obtain information on the irreducible components of F(r, d). |
publishDate |
2014 |
dc.date.none.fl_str_mv |
2014-10 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/18908 Cukierman, Fernando Miguel; Varieties of complexes and foliations; Worldwide Center of Mathematics; Journal of Singularities; 9; 10-2014; 56-67 1949-2006 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/18908 |
identifier_str_mv |
Cukierman, Fernando Miguel; Varieties of complexes and foliations; Worldwide Center of Mathematics; Journal of Singularities; 9; 10-2014; 56-67 1949-2006 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://www.journalofsing.org/volume9/cukierman.pdf info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1111.5514 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Worldwide Center of Mathematics |
publisher.none.fl_str_mv |
Worldwide Center of Mathematics |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614483385778176 |
score |
13.070432 |