Neural network-based compensation control of mobile robots with partially known structure
- Autores
- Rossomando, Francisco Guido; Soria, Carlos Miguel; Carelli Albarracin, Ricardo Oscar
- Año de publicación
- 2012
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- This study proposes an inverse non-linear controller combined with an adaptive neural network proportional integral (PI) sliding mode using an on-line learning algorithm. The neural network acts as a compensator for a conventional inverse controller in order to improve the control performance when the system is affected by variations on their dynamics and kinematics. Also, the proposed controller can reduce the steady-state error of a non-linear inverse controller using the on-line adaptive technique based on Lyapunov’s theory. Experimental results show that the proposed method is effective in controlling dynamic systems with unexpected large uncertainties.
Fil: Rossomando, Francisco Guido. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; Argentina
Fil: Soria, Carlos Miguel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; Argentina
Fil: Carelli Albarracin, Ricardo Oscar. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina - Materia
-
Mobile robots
Neural network
Nonlinear control - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/195461
Ver los metadatos del registro completo
id |
CONICETDig_1a02a51932c5393be3758ee44de0a886 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/195461 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Neural network-based compensation control of mobile robots with partially known structureRossomando, Francisco GuidoSoria, Carlos MiguelCarelli Albarracin, Ricardo OscarMobile robotsNeural networkNonlinear controlhttps://purl.org/becyt/ford/2.2https://purl.org/becyt/ford/2This study proposes an inverse non-linear controller combined with an adaptive neural network proportional integral (PI) sliding mode using an on-line learning algorithm. The neural network acts as a compensator for a conventional inverse controller in order to improve the control performance when the system is affected by variations on their dynamics and kinematics. Also, the proposed controller can reduce the steady-state error of a non-linear inverse controller using the on-line adaptive technique based on Lyapunov’s theory. Experimental results show that the proposed method is effective in controlling dynamic systems with unexpected large uncertainties.Fil: Rossomando, Francisco Guido. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; ArgentinaFil: Soria, Carlos Miguel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; ArgentinaFil: Carelli Albarracin, Ricardo Oscar. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaInstitution of Engineering and Technology2012-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/195461Rossomando, Francisco Guido; Soria, Carlos Miguel; Carelli Albarracin, Ricardo Oscar; Neural network-based compensation control of mobile robots with partially known structure; Institution of Engineering and Technology; IET Control Theory and Applications; 6; 12; 4-2012; 1851-18601751-8644CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://digital-library.theiet.org/content/journals/10.1049/iet-cta.2011.0581info:eu-repo/semantics/altIdentifier/doi/10.1049/iet-cta.2011.0581info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T14:54:08Zoai:ri.conicet.gov.ar:11336/195461instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 14:54:09.177CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Neural network-based compensation control of mobile robots with partially known structure |
title |
Neural network-based compensation control of mobile robots with partially known structure |
spellingShingle |
Neural network-based compensation control of mobile robots with partially known structure Rossomando, Francisco Guido Mobile robots Neural network Nonlinear control |
title_short |
Neural network-based compensation control of mobile robots with partially known structure |
title_full |
Neural network-based compensation control of mobile robots with partially known structure |
title_fullStr |
Neural network-based compensation control of mobile robots with partially known structure |
title_full_unstemmed |
Neural network-based compensation control of mobile robots with partially known structure |
title_sort |
Neural network-based compensation control of mobile robots with partially known structure |
dc.creator.none.fl_str_mv |
Rossomando, Francisco Guido Soria, Carlos Miguel Carelli Albarracin, Ricardo Oscar |
author |
Rossomando, Francisco Guido |
author_facet |
Rossomando, Francisco Guido Soria, Carlos Miguel Carelli Albarracin, Ricardo Oscar |
author_role |
author |
author2 |
Soria, Carlos Miguel Carelli Albarracin, Ricardo Oscar |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Mobile robots Neural network Nonlinear control |
topic |
Mobile robots Neural network Nonlinear control |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.2 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
This study proposes an inverse non-linear controller combined with an adaptive neural network proportional integral (PI) sliding mode using an on-line learning algorithm. The neural network acts as a compensator for a conventional inverse controller in order to improve the control performance when the system is affected by variations on their dynamics and kinematics. Also, the proposed controller can reduce the steady-state error of a non-linear inverse controller using the on-line adaptive technique based on Lyapunov’s theory. Experimental results show that the proposed method is effective in controlling dynamic systems with unexpected large uncertainties. Fil: Rossomando, Francisco Guido. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; Argentina Fil: Soria, Carlos Miguel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; Argentina Fil: Carelli Albarracin, Ricardo Oscar. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina |
description |
This study proposes an inverse non-linear controller combined with an adaptive neural network proportional integral (PI) sliding mode using an on-line learning algorithm. The neural network acts as a compensator for a conventional inverse controller in order to improve the control performance when the system is affected by variations on their dynamics and kinematics. Also, the proposed controller can reduce the steady-state error of a non-linear inverse controller using the on-line adaptive technique based on Lyapunov’s theory. Experimental results show that the proposed method is effective in controlling dynamic systems with unexpected large uncertainties. |
publishDate |
2012 |
dc.date.none.fl_str_mv |
2012-04 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/195461 Rossomando, Francisco Guido; Soria, Carlos Miguel; Carelli Albarracin, Ricardo Oscar; Neural network-based compensation control of mobile robots with partially known structure; Institution of Engineering and Technology; IET Control Theory and Applications; 6; 12; 4-2012; 1851-1860 1751-8644 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/195461 |
identifier_str_mv |
Rossomando, Francisco Guido; Soria, Carlos Miguel; Carelli Albarracin, Ricardo Oscar; Neural network-based compensation control of mobile robots with partially known structure; Institution of Engineering and Technology; IET Control Theory and Applications; 6; 12; 4-2012; 1851-1860 1751-8644 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://digital-library.theiet.org/content/journals/10.1049/iet-cta.2011.0581 info:eu-repo/semantics/altIdentifier/doi/10.1049/iet-cta.2011.0581 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Institution of Engineering and Technology |
publisher.none.fl_str_mv |
Institution of Engineering and Technology |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846083073054081024 |
score |
13.22299 |