Morphology–Transport Coupling and Dissipative Structures in PEO–PS+LiTFSI Electrolytes In-Operando Conditions
- Autores
- Tagliazucchi, Mario Eugenio; Müller, Marcus
- Año de publicación
- 2025
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- A Single-Chain-in-Mean-Field (SCMF) algorithm was introduced to study block copolymer electrolytes in nonequilibrium conditions. This method self-consistently combines a particle-based description of the polymer with a generalized diffusion equation for the ionic fluxes, thus exploiting the time scale separation between fast ion motion and the slow polymer relaxation and self-assembly. We apply this computational method to study ion fluxes in electrochemical cells containing poly(ethylene oxide)-polystyrene (PEO–PS) block copolymers with added lithium salt. Blocking of the anion fluxes by the electrodes in-operando conditions polarizes the cells and results in an inhomogeneous salt-concentration profile. This gradient of salt concentration triggers lamellae-to-disorder and disorder-to-lamellae transitions near the electrodes, in good agreement with previous experimental observations. The effects of the selectivity of the electrode surface, the salt concentration and the voltage applied to the cell are systematically studied. For PEO-selective surfaces, the lamellae parallel to the electrode that forms at low applied potentials transition to a bicontinuous morphology at high applied potentials in order to allow ion transport through the insulating PS layers. The formation of this dissipative structure, which is unexpected considering the equilibrium behavior of the material, is in line with the principle of maximum entropy production. In summary, the transport and morphology in PEO–PS electrolytes are strongly coupled: ionic currents influence self-assembly, which in turn modulates the ionic fluxes in the cell.
Fil: Tagliazucchi, Mario Eugenio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina
Fil: Müller, Marcus. Universität Göttingen; Alemania - Materia
-
Li battery
Electrolyte
Block copolymer
Simulation - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/275405
Ver los metadatos del registro completo
| id |
CONICETDig_19fc82cf40db823a1888da2d282e915f |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/275405 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
Morphology–Transport Coupling and Dissipative Structures in PEO–PS+LiTFSI Electrolytes In-Operando ConditionsTagliazucchi, Mario EugenioMüller, MarcusLi batteryElectrolyteBlock copolymerSimulationhttps://purl.org/becyt/ford/1.4https://purl.org/becyt/ford/1A Single-Chain-in-Mean-Field (SCMF) algorithm was introduced to study block copolymer electrolytes in nonequilibrium conditions. This method self-consistently combines a particle-based description of the polymer with a generalized diffusion equation for the ionic fluxes, thus exploiting the time scale separation between fast ion motion and the slow polymer relaxation and self-assembly. We apply this computational method to study ion fluxes in electrochemical cells containing poly(ethylene oxide)-polystyrene (PEO–PS) block copolymers with added lithium salt. Blocking of the anion fluxes by the electrodes in-operando conditions polarizes the cells and results in an inhomogeneous salt-concentration profile. This gradient of salt concentration triggers lamellae-to-disorder and disorder-to-lamellae transitions near the electrodes, in good agreement with previous experimental observations. The effects of the selectivity of the electrode surface, the salt concentration and the voltage applied to the cell are systematically studied. For PEO-selective surfaces, the lamellae parallel to the electrode that forms at low applied potentials transition to a bicontinuous morphology at high applied potentials in order to allow ion transport through the insulating PS layers. The formation of this dissipative structure, which is unexpected considering the equilibrium behavior of the material, is in line with the principle of maximum entropy production. In summary, the transport and morphology in PEO–PS electrolytes are strongly coupled: ionic currents influence self-assembly, which in turn modulates the ionic fluxes in the cell.Fil: Tagliazucchi, Mario Eugenio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; ArgentinaFil: Müller, Marcus. Universität Göttingen; AlemaniaAmerican Chemical Society2025-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/275405Tagliazucchi, Mario Eugenio; Müller, Marcus; Morphology–Transport Coupling and Dissipative Structures in PEO–PS+LiTFSI Electrolytes In-Operando Conditions; American Chemical Society; ACS Applied Materials & Interfaces; 17; 6; 1-2025; 9278-92881944-8244CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://pubs.acs.org/doi/10.1021/acsami.4c18838info:eu-repo/semantics/altIdentifier/doi/10.1021/acsami.4c18838info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-12-23T13:50:40Zoai:ri.conicet.gov.ar:11336/275405instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-12-23 13:50:40.29CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
Morphology–Transport Coupling and Dissipative Structures in PEO–PS+LiTFSI Electrolytes In-Operando Conditions |
| title |
Morphology–Transport Coupling and Dissipative Structures in PEO–PS+LiTFSI Electrolytes In-Operando Conditions |
| spellingShingle |
Morphology–Transport Coupling and Dissipative Structures in PEO–PS+LiTFSI Electrolytes In-Operando Conditions Tagliazucchi, Mario Eugenio Li battery Electrolyte Block copolymer Simulation |
| title_short |
Morphology–Transport Coupling and Dissipative Structures in PEO–PS+LiTFSI Electrolytes In-Operando Conditions |
| title_full |
Morphology–Transport Coupling and Dissipative Structures in PEO–PS+LiTFSI Electrolytes In-Operando Conditions |
| title_fullStr |
Morphology–Transport Coupling and Dissipative Structures in PEO–PS+LiTFSI Electrolytes In-Operando Conditions |
| title_full_unstemmed |
Morphology–Transport Coupling and Dissipative Structures in PEO–PS+LiTFSI Electrolytes In-Operando Conditions |
| title_sort |
Morphology–Transport Coupling and Dissipative Structures in PEO–PS+LiTFSI Electrolytes In-Operando Conditions |
| dc.creator.none.fl_str_mv |
Tagliazucchi, Mario Eugenio Müller, Marcus |
| author |
Tagliazucchi, Mario Eugenio |
| author_facet |
Tagliazucchi, Mario Eugenio Müller, Marcus |
| author_role |
author |
| author2 |
Müller, Marcus |
| author2_role |
author |
| dc.subject.none.fl_str_mv |
Li battery Electrolyte Block copolymer Simulation |
| topic |
Li battery Electrolyte Block copolymer Simulation |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.4 https://purl.org/becyt/ford/1 |
| dc.description.none.fl_txt_mv |
A Single-Chain-in-Mean-Field (SCMF) algorithm was introduced to study block copolymer electrolytes in nonequilibrium conditions. This method self-consistently combines a particle-based description of the polymer with a generalized diffusion equation for the ionic fluxes, thus exploiting the time scale separation between fast ion motion and the slow polymer relaxation and self-assembly. We apply this computational method to study ion fluxes in electrochemical cells containing poly(ethylene oxide)-polystyrene (PEO–PS) block copolymers with added lithium salt. Blocking of the anion fluxes by the electrodes in-operando conditions polarizes the cells and results in an inhomogeneous salt-concentration profile. This gradient of salt concentration triggers lamellae-to-disorder and disorder-to-lamellae transitions near the electrodes, in good agreement with previous experimental observations. The effects of the selectivity of the electrode surface, the salt concentration and the voltage applied to the cell are systematically studied. For PEO-selective surfaces, the lamellae parallel to the electrode that forms at low applied potentials transition to a bicontinuous morphology at high applied potentials in order to allow ion transport through the insulating PS layers. The formation of this dissipative structure, which is unexpected considering the equilibrium behavior of the material, is in line with the principle of maximum entropy production. In summary, the transport and morphology in PEO–PS electrolytes are strongly coupled: ionic currents influence self-assembly, which in turn modulates the ionic fluxes in the cell. Fil: Tagliazucchi, Mario Eugenio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina Fil: Müller, Marcus. Universität Göttingen; Alemania |
| description |
A Single-Chain-in-Mean-Field (SCMF) algorithm was introduced to study block copolymer electrolytes in nonequilibrium conditions. This method self-consistently combines a particle-based description of the polymer with a generalized diffusion equation for the ionic fluxes, thus exploiting the time scale separation between fast ion motion and the slow polymer relaxation and self-assembly. We apply this computational method to study ion fluxes in electrochemical cells containing poly(ethylene oxide)-polystyrene (PEO–PS) block copolymers with added lithium salt. Blocking of the anion fluxes by the electrodes in-operando conditions polarizes the cells and results in an inhomogeneous salt-concentration profile. This gradient of salt concentration triggers lamellae-to-disorder and disorder-to-lamellae transitions near the electrodes, in good agreement with previous experimental observations. The effects of the selectivity of the electrode surface, the salt concentration and the voltage applied to the cell are systematically studied. For PEO-selective surfaces, the lamellae parallel to the electrode that forms at low applied potentials transition to a bicontinuous morphology at high applied potentials in order to allow ion transport through the insulating PS layers. The formation of this dissipative structure, which is unexpected considering the equilibrium behavior of the material, is in line with the principle of maximum entropy production. In summary, the transport and morphology in PEO–PS electrolytes are strongly coupled: ionic currents influence self-assembly, which in turn modulates the ionic fluxes in the cell. |
| publishDate |
2025 |
| dc.date.none.fl_str_mv |
2025-01 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/275405 Tagliazucchi, Mario Eugenio; Müller, Marcus; Morphology–Transport Coupling and Dissipative Structures in PEO–PS+LiTFSI Electrolytes In-Operando Conditions; American Chemical Society; ACS Applied Materials & Interfaces; 17; 6; 1-2025; 9278-9288 1944-8244 CONICET Digital CONICET |
| url |
http://hdl.handle.net/11336/275405 |
| identifier_str_mv |
Tagliazucchi, Mario Eugenio; Müller, Marcus; Morphology–Transport Coupling and Dissipative Structures in PEO–PS+LiTFSI Electrolytes In-Operando Conditions; American Chemical Society; ACS Applied Materials & Interfaces; 17; 6; 1-2025; 9278-9288 1944-8244 CONICET Digital CONICET |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://pubs.acs.org/doi/10.1021/acsami.4c18838 info:eu-repo/semantics/altIdentifier/doi/10.1021/acsami.4c18838 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
American Chemical Society |
| publisher.none.fl_str_mv |
American Chemical Society |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1852335398556008448 |
| score |
12.952241 |