A top-down approach to build Li2S@rGO cathode composites for high-loading lithium–sulfur batteries in carbonate-based electrolyte
- Autores
- Zensich, Maximiliano Andres; Jaumann, Tony; Morales, Gustavo Marcelo; Giebeler, Lars; Barbero, César Alfredo; Balach, Juan Manuel
- Año de publicación
- 2019
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- With a notable advantage in terms of specific capacity (1166 mAh g−1), lithium disulfide (Li2S) has been considered a promising cathode material for high-energy-density lithium–sulfur (Li–S) batteries. In contrast to pure sulfur, Li2S opens the opportunity to implement alternative anodes such as silicon or graphite instead of hardly controllable lithium metal. However, its intrinsically low conductivity and the formation of soluble lithium polysulfide species during cell operation resulting in a poor cycling stability, especially in carbonate-based electrolytes. Herein, a reduced graphene oxide-wrapped Li2S particles (Li2S@rGO) electrode is presented for improving the electrochemical performance of Li–S batteries in carbonate-based electrolytes. A hydrothermally prepared rGO-covered MoS2 particles composite was fully lithiated and irreversible decomposed at 0.01 V vs. Li/Li+ to in situ produce a Li2S@rGO composite with a high Li2S loading of ≈5 mg cm−2. Despite operating Li–S cells in a conventional carbonate-based electrolyte, the resulting cathode exhibits high initial capacity (975 mAh gLi2S −1 and 1401 mAh gS −1 at 0.1 C), low degradation rate (0.18% per cycle after 200 cycles at 2 C) and excellent Coulombic efficiency (≈99.5%). This work provides a simple strategy to fabricate practical high-loading Li2S cathodes for high-performance Li–S batteries “free” of polysulfide shuttle phenomenon.
Fil: Zensich, Maximiliano Andres. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas Fisicoquímicas y Naturales. Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados. - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados; Argentina
Fil: Jaumann, Tony. Leibniz Institute for Solid State and Materials Research; Alemania
Fil: Morales, Gustavo Marcelo. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas Fisicoquímicas y Naturales. Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados. - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados; Argentina
Fil: Giebeler, Lars. Leibniz Institute for Solid State and Materials Research; Alemania
Fil: Barbero, César Alfredo. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas Fisicoquímicas y Naturales. Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados. - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados; Argentina
Fil: Balach, Juan Manuel. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas Fisicoquímicas y Naturales. Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados. - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados; Argentina - Materia
-
CARBONATE-BASED ELECTROLYTE
LI2S CATHODE
LITHIUM-SULFUR BATTERY
MOS2 ELECTRODE - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/124026
Ver los metadatos del registro completo
id |
CONICETDig_b9453c5560271087d95353b113ce7203 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/124026 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
A top-down approach to build Li2S@rGO cathode composites for high-loading lithium–sulfur batteries in carbonate-based electrolyteZensich, Maximiliano AndresJaumann, TonyMorales, Gustavo MarceloGiebeler, LarsBarbero, César AlfredoBalach, Juan ManuelCARBONATE-BASED ELECTROLYTELI2S CATHODELITHIUM-SULFUR BATTERYMOS2 ELECTRODEhttps://purl.org/becyt/ford/1.4https://purl.org/becyt/ford/1With a notable advantage in terms of specific capacity (1166 mAh g−1), lithium disulfide (Li2S) has been considered a promising cathode material for high-energy-density lithium–sulfur (Li–S) batteries. In contrast to pure sulfur, Li2S opens the opportunity to implement alternative anodes such as silicon or graphite instead of hardly controllable lithium metal. However, its intrinsically low conductivity and the formation of soluble lithium polysulfide species during cell operation resulting in a poor cycling stability, especially in carbonate-based electrolytes. Herein, a reduced graphene oxide-wrapped Li2S particles (Li2S@rGO) electrode is presented for improving the electrochemical performance of Li–S batteries in carbonate-based electrolytes. A hydrothermally prepared rGO-covered MoS2 particles composite was fully lithiated and irreversible decomposed at 0.01 V vs. Li/Li+ to in situ produce a Li2S@rGO composite with a high Li2S loading of ≈5 mg cm−2. Despite operating Li–S cells in a conventional carbonate-based electrolyte, the resulting cathode exhibits high initial capacity (975 mAh gLi2S −1 and 1401 mAh gS −1 at 0.1 C), low degradation rate (0.18% per cycle after 200 cycles at 2 C) and excellent Coulombic efficiency (≈99.5%). This work provides a simple strategy to fabricate practical high-loading Li2S cathodes for high-performance Li–S batteries “free” of polysulfide shuttle phenomenon.Fil: Zensich, Maximiliano Andres. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas Fisicoquímicas y Naturales. Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados. - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados; ArgentinaFil: Jaumann, Tony. Leibniz Institute for Solid State and Materials Research; AlemaniaFil: Morales, Gustavo Marcelo. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas Fisicoquímicas y Naturales. Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados. - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados; ArgentinaFil: Giebeler, Lars. Leibniz Institute for Solid State and Materials Research; AlemaniaFil: Barbero, César Alfredo. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas Fisicoquímicas y Naturales. Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados. - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados; ArgentinaFil: Balach, Juan Manuel. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas Fisicoquímicas y Naturales. Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados. - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados; ArgentinaPergamon-Elsevier Science Ltd2019-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/124026Zensich, Maximiliano Andres; Jaumann, Tony; Morales, Gustavo Marcelo; Giebeler, Lars; Barbero, César Alfredo; et al.; A top-down approach to build Li2S@rGO cathode composites for high-loading lithium–sulfur batteries in carbonate-based electrolyte; Pergamon-Elsevier Science Ltd; Electrochimica Acta; 296; 2-2019; 243-2500013-4686CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/abs/pii/S0013468618324460info:eu-repo/semantics/altIdentifier/doi/10.1016/j.electacta.2018.10.184info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T14:55:07Zoai:ri.conicet.gov.ar:11336/124026instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 14:55:07.821CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
A top-down approach to build Li2S@rGO cathode composites for high-loading lithium–sulfur batteries in carbonate-based electrolyte |
title |
A top-down approach to build Li2S@rGO cathode composites for high-loading lithium–sulfur batteries in carbonate-based electrolyte |
spellingShingle |
A top-down approach to build Li2S@rGO cathode composites for high-loading lithium–sulfur batteries in carbonate-based electrolyte Zensich, Maximiliano Andres CARBONATE-BASED ELECTROLYTE LI2S CATHODE LITHIUM-SULFUR BATTERY MOS2 ELECTRODE |
title_short |
A top-down approach to build Li2S@rGO cathode composites for high-loading lithium–sulfur batteries in carbonate-based electrolyte |
title_full |
A top-down approach to build Li2S@rGO cathode composites for high-loading lithium–sulfur batteries in carbonate-based electrolyte |
title_fullStr |
A top-down approach to build Li2S@rGO cathode composites for high-loading lithium–sulfur batteries in carbonate-based electrolyte |
title_full_unstemmed |
A top-down approach to build Li2S@rGO cathode composites for high-loading lithium–sulfur batteries in carbonate-based electrolyte |
title_sort |
A top-down approach to build Li2S@rGO cathode composites for high-loading lithium–sulfur batteries in carbonate-based electrolyte |
dc.creator.none.fl_str_mv |
Zensich, Maximiliano Andres Jaumann, Tony Morales, Gustavo Marcelo Giebeler, Lars Barbero, César Alfredo Balach, Juan Manuel |
author |
Zensich, Maximiliano Andres |
author_facet |
Zensich, Maximiliano Andres Jaumann, Tony Morales, Gustavo Marcelo Giebeler, Lars Barbero, César Alfredo Balach, Juan Manuel |
author_role |
author |
author2 |
Jaumann, Tony Morales, Gustavo Marcelo Giebeler, Lars Barbero, César Alfredo Balach, Juan Manuel |
author2_role |
author author author author author |
dc.subject.none.fl_str_mv |
CARBONATE-BASED ELECTROLYTE LI2S CATHODE LITHIUM-SULFUR BATTERY MOS2 ELECTRODE |
topic |
CARBONATE-BASED ELECTROLYTE LI2S CATHODE LITHIUM-SULFUR BATTERY MOS2 ELECTRODE |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.4 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
With a notable advantage in terms of specific capacity (1166 mAh g−1), lithium disulfide (Li2S) has been considered a promising cathode material for high-energy-density lithium–sulfur (Li–S) batteries. In contrast to pure sulfur, Li2S opens the opportunity to implement alternative anodes such as silicon or graphite instead of hardly controllable lithium metal. However, its intrinsically low conductivity and the formation of soluble lithium polysulfide species during cell operation resulting in a poor cycling stability, especially in carbonate-based electrolytes. Herein, a reduced graphene oxide-wrapped Li2S particles (Li2S@rGO) electrode is presented for improving the electrochemical performance of Li–S batteries in carbonate-based electrolytes. A hydrothermally prepared rGO-covered MoS2 particles composite was fully lithiated and irreversible decomposed at 0.01 V vs. Li/Li+ to in situ produce a Li2S@rGO composite with a high Li2S loading of ≈5 mg cm−2. Despite operating Li–S cells in a conventional carbonate-based electrolyte, the resulting cathode exhibits high initial capacity (975 mAh gLi2S −1 and 1401 mAh gS −1 at 0.1 C), low degradation rate (0.18% per cycle after 200 cycles at 2 C) and excellent Coulombic efficiency (≈99.5%). This work provides a simple strategy to fabricate practical high-loading Li2S cathodes for high-performance Li–S batteries “free” of polysulfide shuttle phenomenon. Fil: Zensich, Maximiliano Andres. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas Fisicoquímicas y Naturales. Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados. - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados; Argentina Fil: Jaumann, Tony. Leibniz Institute for Solid State and Materials Research; Alemania Fil: Morales, Gustavo Marcelo. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas Fisicoquímicas y Naturales. Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados. - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados; Argentina Fil: Giebeler, Lars. Leibniz Institute for Solid State and Materials Research; Alemania Fil: Barbero, César Alfredo. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas Fisicoquímicas y Naturales. Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados. - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados; Argentina Fil: Balach, Juan Manuel. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas Fisicoquímicas y Naturales. Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados. - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados; Argentina |
description |
With a notable advantage in terms of specific capacity (1166 mAh g−1), lithium disulfide (Li2S) has been considered a promising cathode material for high-energy-density lithium–sulfur (Li–S) batteries. In contrast to pure sulfur, Li2S opens the opportunity to implement alternative anodes such as silicon or graphite instead of hardly controllable lithium metal. However, its intrinsically low conductivity and the formation of soluble lithium polysulfide species during cell operation resulting in a poor cycling stability, especially in carbonate-based electrolytes. Herein, a reduced graphene oxide-wrapped Li2S particles (Li2S@rGO) electrode is presented for improving the electrochemical performance of Li–S batteries in carbonate-based electrolytes. A hydrothermally prepared rGO-covered MoS2 particles composite was fully lithiated and irreversible decomposed at 0.01 V vs. Li/Li+ to in situ produce a Li2S@rGO composite with a high Li2S loading of ≈5 mg cm−2. Despite operating Li–S cells in a conventional carbonate-based electrolyte, the resulting cathode exhibits high initial capacity (975 mAh gLi2S −1 and 1401 mAh gS −1 at 0.1 C), low degradation rate (0.18% per cycle after 200 cycles at 2 C) and excellent Coulombic efficiency (≈99.5%). This work provides a simple strategy to fabricate practical high-loading Li2S cathodes for high-performance Li–S batteries “free” of polysulfide shuttle phenomenon. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-02 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/124026 Zensich, Maximiliano Andres; Jaumann, Tony; Morales, Gustavo Marcelo; Giebeler, Lars; Barbero, César Alfredo; et al.; A top-down approach to build Li2S@rGO cathode composites for high-loading lithium–sulfur batteries in carbonate-based electrolyte; Pergamon-Elsevier Science Ltd; Electrochimica Acta; 296; 2-2019; 243-250 0013-4686 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/124026 |
identifier_str_mv |
Zensich, Maximiliano Andres; Jaumann, Tony; Morales, Gustavo Marcelo; Giebeler, Lars; Barbero, César Alfredo; et al.; A top-down approach to build Li2S@rGO cathode composites for high-loading lithium–sulfur batteries in carbonate-based electrolyte; Pergamon-Elsevier Science Ltd; Electrochimica Acta; 296; 2-2019; 243-250 0013-4686 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/abs/pii/S0013468618324460 info:eu-repo/semantics/altIdentifier/doi/10.1016/j.electacta.2018.10.184 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Pergamon-Elsevier Science Ltd |
publisher.none.fl_str_mv |
Pergamon-Elsevier Science Ltd |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846083084580028416 |
score |
13.216834 |