Advancements in Quasi-Solid-State Li Batteries: A Rigid Hybrid Electrolyte Using LATP Porous Ceramic Membrane and Infiltrated Ionic Liquid
- Autores
- Reinoso, Deborath Mariana; de la Torre Gamarra, Carmen; Fernández Ropero, Antonio J.; Levenfeld, Belén; Várez, Alejandro
- Año de publicación
- 2024
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Despite the progress made in Li-ion battery components, technology still faces major challenges. Among them, the development of novel electrolytes with promising characteristics is required for next-generation energy storage devices. In this work, rigid hybrid electrolytes have been prepared by infiltration of an ionic liquid solution (Pyr14TFSI) with a lithium salt (LiTFSI) into a sintered LATP ion-conducting porous ceramic. The porous ceramic 3D network was obtained via solid-state sintering of LATP powders mixed with a small amount of corn starch as pore former. A synergetic effect between the ionic liquid and support was evidenced. The resultant quasi-solid-state hybrid electrolytes exhibit high ionic conductivity (∼10–3 S·cm–1 at 303 K), improved ion transfer number, tLi+, and a wide electrochemical window of 4.7–4.9 V vs Li+/Li. The LATP porosity plays a critical role in the free Li+ charge because it favors higher TFSI– confinement in the ceramic interfaces, which consequently positively influences tLi+ and ionic conductivity. Electrochemical tests conducted at room temperature for Li/LiFePO4 cells using the hybrid electrolyte exhibited a high capacity of 150 mAh·g–1LFP at C/30, and still retained 60 mAh·g–1 LFP at 1 C, while bare LATP does not perform well at low temperatures. These findings highlight this hybrid electrolyte as a superior alternative to the ceramic LATP electrolyte and a safer option compared with conventional organic electrolytes.
Fil: Reinoso, Deborath Mariana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Química del Sur. Universidad Nacional del Sur. Departamento de Química. Instituto de Química del Sur; Argentina
Fil: de la Torre Gamarra, Carmen. Universidad Carlos III de Madrid. Instituto de Salud; España
Fil: Fernández Ropero, Antonio J.. Universidad Carlos III de Madrid. Instituto de Salud; España
Fil: Levenfeld, Belén. Universidad Carlos III de Madrid. Instituto de Salud; España
Fil: Várez, Alejandro. Universidad Carlos III de Madrid. Instituto de Salud; España - Materia
-
HYBRID ELECTROLYTES
IONIC LIQUID
LI BATTERY
POROUS CERAMIC SUPPORT
QUASI-SOLID-STATE ELECTROLYTE - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/254183
Ver los metadatos del registro completo
id |
CONICETDig_932a9197c6cb32b217d079a4cf6fa105 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/254183 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Advancements in Quasi-Solid-State Li Batteries: A Rigid Hybrid Electrolyte Using LATP Porous Ceramic Membrane and Infiltrated Ionic LiquidReinoso, Deborath Marianade la Torre Gamarra, CarmenFernández Ropero, Antonio J.Levenfeld, BelénVárez, AlejandroHYBRID ELECTROLYTESIONIC LIQUIDLI BATTERYPOROUS CERAMIC SUPPORTQUASI-SOLID-STATE ELECTROLYTEhttps://purl.org/becyt/ford/2.5https://purl.org/becyt/ford/2Despite the progress made in Li-ion battery components, technology still faces major challenges. Among them, the development of novel electrolytes with promising characteristics is required for next-generation energy storage devices. In this work, rigid hybrid electrolytes have been prepared by infiltration of an ionic liquid solution (Pyr14TFSI) with a lithium salt (LiTFSI) into a sintered LATP ion-conducting porous ceramic. The porous ceramic 3D network was obtained via solid-state sintering of LATP powders mixed with a small amount of corn starch as pore former. A synergetic effect between the ionic liquid and support was evidenced. The resultant quasi-solid-state hybrid electrolytes exhibit high ionic conductivity (∼10–3 S·cm–1 at 303 K), improved ion transfer number, tLi+, and a wide electrochemical window of 4.7–4.9 V vs Li+/Li. The LATP porosity plays a critical role in the free Li+ charge because it favors higher TFSI– confinement in the ceramic interfaces, which consequently positively influences tLi+ and ionic conductivity. Electrochemical tests conducted at room temperature for Li/LiFePO4 cells using the hybrid electrolyte exhibited a high capacity of 150 mAh·g–1LFP at C/30, and still retained 60 mAh·g–1 LFP at 1 C, while bare LATP does not perform well at low temperatures. These findings highlight this hybrid electrolyte as a superior alternative to the ceramic LATP electrolyte and a safer option compared with conventional organic electrolytes.Fil: Reinoso, Deborath Mariana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Química del Sur. Universidad Nacional del Sur. Departamento de Química. Instituto de Química del Sur; ArgentinaFil: de la Torre Gamarra, Carmen. Universidad Carlos III de Madrid. Instituto de Salud; EspañaFil: Fernández Ropero, Antonio J.. Universidad Carlos III de Madrid. Instituto de Salud; EspañaFil: Levenfeld, Belén. Universidad Carlos III de Madrid. Instituto de Salud; EspañaFil: Várez, Alejandro. Universidad Carlos III de Madrid. Instituto de Salud; EspañaAmerican Chemical Society2024-02-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/254183Reinoso, Deborath Mariana; de la Torre Gamarra, Carmen; Fernández Ropero, Antonio J.; Levenfeld, Belén; Várez, Alejandro; Advancements in Quasi-Solid-State Li Batteries: A Rigid Hybrid Electrolyte Using LATP Porous Ceramic Membrane and Infiltrated Ionic Liquid; American Chemical Society; ACS Applied Energy Materials; 7; 6-2-2024; 1527-15382574-09622574-0962CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://pubs.acs.org/doi/10.1021/acsaem.3c02828info:eu-repo/semantics/altIdentifier/doi/10.1021/acsaem.3c02828info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:29:04Zoai:ri.conicet.gov.ar:11336/254183instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:29:04.885CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Advancements in Quasi-Solid-State Li Batteries: A Rigid Hybrid Electrolyte Using LATP Porous Ceramic Membrane and Infiltrated Ionic Liquid |
title |
Advancements in Quasi-Solid-State Li Batteries: A Rigid Hybrid Electrolyte Using LATP Porous Ceramic Membrane and Infiltrated Ionic Liquid |
spellingShingle |
Advancements in Quasi-Solid-State Li Batteries: A Rigid Hybrid Electrolyte Using LATP Porous Ceramic Membrane and Infiltrated Ionic Liquid Reinoso, Deborath Mariana HYBRID ELECTROLYTES IONIC LIQUID LI BATTERY POROUS CERAMIC SUPPORT QUASI-SOLID-STATE ELECTROLYTE |
title_short |
Advancements in Quasi-Solid-State Li Batteries: A Rigid Hybrid Electrolyte Using LATP Porous Ceramic Membrane and Infiltrated Ionic Liquid |
title_full |
Advancements in Quasi-Solid-State Li Batteries: A Rigid Hybrid Electrolyte Using LATP Porous Ceramic Membrane and Infiltrated Ionic Liquid |
title_fullStr |
Advancements in Quasi-Solid-State Li Batteries: A Rigid Hybrid Electrolyte Using LATP Porous Ceramic Membrane and Infiltrated Ionic Liquid |
title_full_unstemmed |
Advancements in Quasi-Solid-State Li Batteries: A Rigid Hybrid Electrolyte Using LATP Porous Ceramic Membrane and Infiltrated Ionic Liquid |
title_sort |
Advancements in Quasi-Solid-State Li Batteries: A Rigid Hybrid Electrolyte Using LATP Porous Ceramic Membrane and Infiltrated Ionic Liquid |
dc.creator.none.fl_str_mv |
Reinoso, Deborath Mariana de la Torre Gamarra, Carmen Fernández Ropero, Antonio J. Levenfeld, Belén Várez, Alejandro |
author |
Reinoso, Deborath Mariana |
author_facet |
Reinoso, Deborath Mariana de la Torre Gamarra, Carmen Fernández Ropero, Antonio J. Levenfeld, Belén Várez, Alejandro |
author_role |
author |
author2 |
de la Torre Gamarra, Carmen Fernández Ropero, Antonio J. Levenfeld, Belén Várez, Alejandro |
author2_role |
author author author author |
dc.subject.none.fl_str_mv |
HYBRID ELECTROLYTES IONIC LIQUID LI BATTERY POROUS CERAMIC SUPPORT QUASI-SOLID-STATE ELECTROLYTE |
topic |
HYBRID ELECTROLYTES IONIC LIQUID LI BATTERY POROUS CERAMIC SUPPORT QUASI-SOLID-STATE ELECTROLYTE |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.5 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
Despite the progress made in Li-ion battery components, technology still faces major challenges. Among them, the development of novel electrolytes with promising characteristics is required for next-generation energy storage devices. In this work, rigid hybrid electrolytes have been prepared by infiltration of an ionic liquid solution (Pyr14TFSI) with a lithium salt (LiTFSI) into a sintered LATP ion-conducting porous ceramic. The porous ceramic 3D network was obtained via solid-state sintering of LATP powders mixed with a small amount of corn starch as pore former. A synergetic effect between the ionic liquid and support was evidenced. The resultant quasi-solid-state hybrid electrolytes exhibit high ionic conductivity (∼10–3 S·cm–1 at 303 K), improved ion transfer number, tLi+, and a wide electrochemical window of 4.7–4.9 V vs Li+/Li. The LATP porosity plays a critical role in the free Li+ charge because it favors higher TFSI– confinement in the ceramic interfaces, which consequently positively influences tLi+ and ionic conductivity. Electrochemical tests conducted at room temperature for Li/LiFePO4 cells using the hybrid electrolyte exhibited a high capacity of 150 mAh·g–1LFP at C/30, and still retained 60 mAh·g–1 LFP at 1 C, while bare LATP does not perform well at low temperatures. These findings highlight this hybrid electrolyte as a superior alternative to the ceramic LATP electrolyte and a safer option compared with conventional organic electrolytes. Fil: Reinoso, Deborath Mariana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Química del Sur. Universidad Nacional del Sur. Departamento de Química. Instituto de Química del Sur; Argentina Fil: de la Torre Gamarra, Carmen. Universidad Carlos III de Madrid. Instituto de Salud; España Fil: Fernández Ropero, Antonio J.. Universidad Carlos III de Madrid. Instituto de Salud; España Fil: Levenfeld, Belén. Universidad Carlos III de Madrid. Instituto de Salud; España Fil: Várez, Alejandro. Universidad Carlos III de Madrid. Instituto de Salud; España |
description |
Despite the progress made in Li-ion battery components, technology still faces major challenges. Among them, the development of novel electrolytes with promising characteristics is required for next-generation energy storage devices. In this work, rigid hybrid electrolytes have been prepared by infiltration of an ionic liquid solution (Pyr14TFSI) with a lithium salt (LiTFSI) into a sintered LATP ion-conducting porous ceramic. The porous ceramic 3D network was obtained via solid-state sintering of LATP powders mixed with a small amount of corn starch as pore former. A synergetic effect between the ionic liquid and support was evidenced. The resultant quasi-solid-state hybrid electrolytes exhibit high ionic conductivity (∼10–3 S·cm–1 at 303 K), improved ion transfer number, tLi+, and a wide electrochemical window of 4.7–4.9 V vs Li+/Li. The LATP porosity plays a critical role in the free Li+ charge because it favors higher TFSI– confinement in the ceramic interfaces, which consequently positively influences tLi+ and ionic conductivity. Electrochemical tests conducted at room temperature for Li/LiFePO4 cells using the hybrid electrolyte exhibited a high capacity of 150 mAh·g–1LFP at C/30, and still retained 60 mAh·g–1 LFP at 1 C, while bare LATP does not perform well at low temperatures. These findings highlight this hybrid electrolyte as a superior alternative to the ceramic LATP electrolyte and a safer option compared with conventional organic electrolytes. |
publishDate |
2024 |
dc.date.none.fl_str_mv |
2024-02-06 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/254183 Reinoso, Deborath Mariana; de la Torre Gamarra, Carmen; Fernández Ropero, Antonio J.; Levenfeld, Belén; Várez, Alejandro; Advancements in Quasi-Solid-State Li Batteries: A Rigid Hybrid Electrolyte Using LATP Porous Ceramic Membrane and Infiltrated Ionic Liquid; American Chemical Society; ACS Applied Energy Materials; 7; 6-2-2024; 1527-1538 2574-0962 2574-0962 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/254183 |
identifier_str_mv |
Reinoso, Deborath Mariana; de la Torre Gamarra, Carmen; Fernández Ropero, Antonio J.; Levenfeld, Belén; Várez, Alejandro; Advancements in Quasi-Solid-State Li Batteries: A Rigid Hybrid Electrolyte Using LATP Porous Ceramic Membrane and Infiltrated Ionic Liquid; American Chemical Society; ACS Applied Energy Materials; 7; 6-2-2024; 1527-1538 2574-0962 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://pubs.acs.org/doi/10.1021/acsaem.3c02828 info:eu-repo/semantics/altIdentifier/doi/10.1021/acsaem.3c02828 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
American Chemical Society |
publisher.none.fl_str_mv |
American Chemical Society |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614295738908672 |
score |
13.070432 |