Advancements in Quasi-Solid-State Li Batteries: A Rigid Hybrid Electrolyte Using LATP Porous Ceramic Membrane and Infiltrated Ionic Liquid

Autores
Reinoso, Deborath Mariana; de la Torre Gamarra, Carmen; Fernández Ropero, Antonio J.; Levenfeld, Belén; Várez, Alejandro
Año de publicación
2024
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Despite the progress made in Li-ion battery components, technology still faces major challenges. Among them, the development of novel electrolytes with promising characteristics is required for next-generation energy storage devices. In this work, rigid hybrid electrolytes have been prepared by infiltration of an ionic liquid solution (Pyr14TFSI) with a lithium salt (LiTFSI) into a sintered LATP ion-conducting porous ceramic. The porous ceramic 3D network was obtained via solid-state sintering of LATP powders mixed with a small amount of corn starch as pore former. A synergetic effect between the ionic liquid and support was evidenced. The resultant quasi-solid-state hybrid electrolytes exhibit high ionic conductivity (∼10–3 S·cm–1 at 303 K), improved ion transfer number, tLi+, and a wide electrochemical window of 4.7–4.9 V vs Li+/Li. The LATP porosity plays a critical role in the free Li+ charge because it favors higher TFSI– confinement in the ceramic interfaces, which consequently positively influences tLi+ and ionic conductivity. Electrochemical tests conducted at room temperature for Li/LiFePO4 cells using the hybrid electrolyte exhibited a high capacity of 150 mAh·g–1LFP at C/30, and still retained 60 mAh·g–1 LFP at 1 C, while bare LATP does not perform well at low temperatures. These findings highlight this hybrid electrolyte as a superior alternative to the ceramic LATP electrolyte and a safer option compared with conventional organic electrolytes.
Fil: Reinoso, Deborath Mariana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Química del Sur. Universidad Nacional del Sur. Departamento de Química. Instituto de Química del Sur; Argentina
Fil: de la Torre Gamarra, Carmen. Universidad Carlos III de Madrid. Instituto de Salud; España
Fil: Fernández Ropero, Antonio J.. Universidad Carlos III de Madrid. Instituto de Salud; España
Fil: Levenfeld, Belén. Universidad Carlos III de Madrid. Instituto de Salud; España
Fil: Várez, Alejandro. Universidad Carlos III de Madrid. Instituto de Salud; España
Materia
HYBRID ELECTROLYTES
IONIC LIQUID
LI BATTERY
POROUS CERAMIC SUPPORT
QUASI-SOLID-STATE ELECTROLYTE
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/254183

id CONICETDig_932a9197c6cb32b217d079a4cf6fa105
oai_identifier_str oai:ri.conicet.gov.ar:11336/254183
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Advancements in Quasi-Solid-State Li Batteries: A Rigid Hybrid Electrolyte Using LATP Porous Ceramic Membrane and Infiltrated Ionic LiquidReinoso, Deborath Marianade la Torre Gamarra, CarmenFernández Ropero, Antonio J.Levenfeld, BelénVárez, AlejandroHYBRID ELECTROLYTESIONIC LIQUIDLI BATTERYPOROUS CERAMIC SUPPORTQUASI-SOLID-STATE ELECTROLYTEhttps://purl.org/becyt/ford/2.5https://purl.org/becyt/ford/2Despite the progress made in Li-ion battery components, technology still faces major challenges. Among them, the development of novel electrolytes with promising characteristics is required for next-generation energy storage devices. In this work, rigid hybrid electrolytes have been prepared by infiltration of an ionic liquid solution (Pyr14TFSI) with a lithium salt (LiTFSI) into a sintered LATP ion-conducting porous ceramic. The porous ceramic 3D network was obtained via solid-state sintering of LATP powders mixed with a small amount of corn starch as pore former. A synergetic effect between the ionic liquid and support was evidenced. The resultant quasi-solid-state hybrid electrolytes exhibit high ionic conductivity (∼10–3 S·cm–1 at 303 K), improved ion transfer number, tLi+, and a wide electrochemical window of 4.7–4.9 V vs Li+/Li. The LATP porosity plays a critical role in the free Li+ charge because it favors higher TFSI– confinement in the ceramic interfaces, which consequently positively influences tLi+ and ionic conductivity. Electrochemical tests conducted at room temperature for Li/LiFePO4 cells using the hybrid electrolyte exhibited a high capacity of 150 mAh·g–1LFP at C/30, and still retained 60 mAh·g–1 LFP at 1 C, while bare LATP does not perform well at low temperatures. These findings highlight this hybrid electrolyte as a superior alternative to the ceramic LATP electrolyte and a safer option compared with conventional organic electrolytes.Fil: Reinoso, Deborath Mariana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Química del Sur. Universidad Nacional del Sur. Departamento de Química. Instituto de Química del Sur; ArgentinaFil: de la Torre Gamarra, Carmen. Universidad Carlos III de Madrid. Instituto de Salud; EspañaFil: Fernández Ropero, Antonio J.. Universidad Carlos III de Madrid. Instituto de Salud; EspañaFil: Levenfeld, Belén. Universidad Carlos III de Madrid. Instituto de Salud; EspañaFil: Várez, Alejandro. Universidad Carlos III de Madrid. Instituto de Salud; EspañaAmerican Chemical Society2024-02-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/254183Reinoso, Deborath Mariana; de la Torre Gamarra, Carmen; Fernández Ropero, Antonio J.; Levenfeld, Belén; Várez, Alejandro; Advancements in Quasi-Solid-State Li Batteries: A Rigid Hybrid Electrolyte Using LATP Porous Ceramic Membrane and Infiltrated Ionic Liquid; American Chemical Society; ACS Applied Energy Materials; 7; 6-2-2024; 1527-15382574-09622574-0962CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://pubs.acs.org/doi/10.1021/acsaem.3c02828info:eu-repo/semantics/altIdentifier/doi/10.1021/acsaem.3c02828info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:29:04Zoai:ri.conicet.gov.ar:11336/254183instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:29:04.885CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Advancements in Quasi-Solid-State Li Batteries: A Rigid Hybrid Electrolyte Using LATP Porous Ceramic Membrane and Infiltrated Ionic Liquid
title Advancements in Quasi-Solid-State Li Batteries: A Rigid Hybrid Electrolyte Using LATP Porous Ceramic Membrane and Infiltrated Ionic Liquid
spellingShingle Advancements in Quasi-Solid-State Li Batteries: A Rigid Hybrid Electrolyte Using LATP Porous Ceramic Membrane and Infiltrated Ionic Liquid
Reinoso, Deborath Mariana
HYBRID ELECTROLYTES
IONIC LIQUID
LI BATTERY
POROUS CERAMIC SUPPORT
QUASI-SOLID-STATE ELECTROLYTE
title_short Advancements in Quasi-Solid-State Li Batteries: A Rigid Hybrid Electrolyte Using LATP Porous Ceramic Membrane and Infiltrated Ionic Liquid
title_full Advancements in Quasi-Solid-State Li Batteries: A Rigid Hybrid Electrolyte Using LATP Porous Ceramic Membrane and Infiltrated Ionic Liquid
title_fullStr Advancements in Quasi-Solid-State Li Batteries: A Rigid Hybrid Electrolyte Using LATP Porous Ceramic Membrane and Infiltrated Ionic Liquid
title_full_unstemmed Advancements in Quasi-Solid-State Li Batteries: A Rigid Hybrid Electrolyte Using LATP Porous Ceramic Membrane and Infiltrated Ionic Liquid
title_sort Advancements in Quasi-Solid-State Li Batteries: A Rigid Hybrid Electrolyte Using LATP Porous Ceramic Membrane and Infiltrated Ionic Liquid
dc.creator.none.fl_str_mv Reinoso, Deborath Mariana
de la Torre Gamarra, Carmen
Fernández Ropero, Antonio J.
Levenfeld, Belén
Várez, Alejandro
author Reinoso, Deborath Mariana
author_facet Reinoso, Deborath Mariana
de la Torre Gamarra, Carmen
Fernández Ropero, Antonio J.
Levenfeld, Belén
Várez, Alejandro
author_role author
author2 de la Torre Gamarra, Carmen
Fernández Ropero, Antonio J.
Levenfeld, Belén
Várez, Alejandro
author2_role author
author
author
author
dc.subject.none.fl_str_mv HYBRID ELECTROLYTES
IONIC LIQUID
LI BATTERY
POROUS CERAMIC SUPPORT
QUASI-SOLID-STATE ELECTROLYTE
topic HYBRID ELECTROLYTES
IONIC LIQUID
LI BATTERY
POROUS CERAMIC SUPPORT
QUASI-SOLID-STATE ELECTROLYTE
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.5
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv Despite the progress made in Li-ion battery components, technology still faces major challenges. Among them, the development of novel electrolytes with promising characteristics is required for next-generation energy storage devices. In this work, rigid hybrid electrolytes have been prepared by infiltration of an ionic liquid solution (Pyr14TFSI) with a lithium salt (LiTFSI) into a sintered LATP ion-conducting porous ceramic. The porous ceramic 3D network was obtained via solid-state sintering of LATP powders mixed with a small amount of corn starch as pore former. A synergetic effect between the ionic liquid and support was evidenced. The resultant quasi-solid-state hybrid electrolytes exhibit high ionic conductivity (∼10–3 S·cm–1 at 303 K), improved ion transfer number, tLi+, and a wide electrochemical window of 4.7–4.9 V vs Li+/Li. The LATP porosity plays a critical role in the free Li+ charge because it favors higher TFSI– confinement in the ceramic interfaces, which consequently positively influences tLi+ and ionic conductivity. Electrochemical tests conducted at room temperature for Li/LiFePO4 cells using the hybrid electrolyte exhibited a high capacity of 150 mAh·g–1LFP at C/30, and still retained 60 mAh·g–1 LFP at 1 C, while bare LATP does not perform well at low temperatures. These findings highlight this hybrid electrolyte as a superior alternative to the ceramic LATP electrolyte and a safer option compared with conventional organic electrolytes.
Fil: Reinoso, Deborath Mariana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Química del Sur. Universidad Nacional del Sur. Departamento de Química. Instituto de Química del Sur; Argentina
Fil: de la Torre Gamarra, Carmen. Universidad Carlos III de Madrid. Instituto de Salud; España
Fil: Fernández Ropero, Antonio J.. Universidad Carlos III de Madrid. Instituto de Salud; España
Fil: Levenfeld, Belén. Universidad Carlos III de Madrid. Instituto de Salud; España
Fil: Várez, Alejandro. Universidad Carlos III de Madrid. Instituto de Salud; España
description Despite the progress made in Li-ion battery components, technology still faces major challenges. Among them, the development of novel electrolytes with promising characteristics is required for next-generation energy storage devices. In this work, rigid hybrid electrolytes have been prepared by infiltration of an ionic liquid solution (Pyr14TFSI) with a lithium salt (LiTFSI) into a sintered LATP ion-conducting porous ceramic. The porous ceramic 3D network was obtained via solid-state sintering of LATP powders mixed with a small amount of corn starch as pore former. A synergetic effect between the ionic liquid and support was evidenced. The resultant quasi-solid-state hybrid electrolytes exhibit high ionic conductivity (∼10–3 S·cm–1 at 303 K), improved ion transfer number, tLi+, and a wide electrochemical window of 4.7–4.9 V vs Li+/Li. The LATP porosity plays a critical role in the free Li+ charge because it favors higher TFSI– confinement in the ceramic interfaces, which consequently positively influences tLi+ and ionic conductivity. Electrochemical tests conducted at room temperature for Li/LiFePO4 cells using the hybrid electrolyte exhibited a high capacity of 150 mAh·g–1LFP at C/30, and still retained 60 mAh·g–1 LFP at 1 C, while bare LATP does not perform well at low temperatures. These findings highlight this hybrid electrolyte as a superior alternative to the ceramic LATP electrolyte and a safer option compared with conventional organic electrolytes.
publishDate 2024
dc.date.none.fl_str_mv 2024-02-06
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/254183
Reinoso, Deborath Mariana; de la Torre Gamarra, Carmen; Fernández Ropero, Antonio J.; Levenfeld, Belén; Várez, Alejandro; Advancements in Quasi-Solid-State Li Batteries: A Rigid Hybrid Electrolyte Using LATP Porous Ceramic Membrane and Infiltrated Ionic Liquid; American Chemical Society; ACS Applied Energy Materials; 7; 6-2-2024; 1527-1538
2574-0962
2574-0962
CONICET Digital
CONICET
url http://hdl.handle.net/11336/254183
identifier_str_mv Reinoso, Deborath Mariana; de la Torre Gamarra, Carmen; Fernández Ropero, Antonio J.; Levenfeld, Belén; Várez, Alejandro; Advancements in Quasi-Solid-State Li Batteries: A Rigid Hybrid Electrolyte Using LATP Porous Ceramic Membrane and Infiltrated Ionic Liquid; American Chemical Society; ACS Applied Energy Materials; 7; 6-2-2024; 1527-1538
2574-0962
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://pubs.acs.org/doi/10.1021/acsaem.3c02828
info:eu-repo/semantics/altIdentifier/doi/10.1021/acsaem.3c02828
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv American Chemical Society
publisher.none.fl_str_mv American Chemical Society
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614295738908672
score 13.070432