A cohomological proof of Peterson-Kac's theorem of conjugacy of Cartan subalgebras of affine Kac-Moody Lie algebras
- Autores
- Chernousov, V.; Gille, P.; Pianzola, Arturo; Yahorau, U.
- Año de publicación
- 2014
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- This paper deals with the problem of conjugacy of Cartan subalgebras for affine Kac-Moody Lie algebras. Unlike the methods used by Peterson and Kac, our approach is entirely cohomological and geometric. It is deeply rooted on the theory of reductive group schemes developed by Demazure and Grothendieck, and on the work of J. Tits on buildings.
Fil: Chernousov, V.. University of Alberta; Canadá
Fil: Gille, P.. Centre National de la Recherche Scientifique. Ecole Normale Supérieure; Francia
Fil: Pianzola, Arturo. University of Alberta; Canadá. Universidad Centro de Altos Estudios en Ciencias Exactas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Yahorau, U.. University of Alberta; Canadá - Materia
-
Conjucacy
Cartan Subalgebras
Affine Kac-Moody Lie Algebras
Non-Abelian Cohomology - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/32669
Ver los metadatos del registro completo
id |
CONICETDig_486f4f2e41662bb3ce2e6e5a45bbe251 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/32669 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
A cohomological proof of Peterson-Kac's theorem of conjugacy of Cartan subalgebras of affine Kac-Moody Lie algebrasChernousov, V.Gille, P.Pianzola, ArturoYahorau, U.ConjucacyCartan SubalgebrasAffine Kac-Moody Lie AlgebrasNon-Abelian Cohomologyhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1This paper deals with the problem of conjugacy of Cartan subalgebras for affine Kac-Moody Lie algebras. Unlike the methods used by Peterson and Kac, our approach is entirely cohomological and geometric. It is deeply rooted on the theory of reductive group schemes developed by Demazure and Grothendieck, and on the work of J. Tits on buildings.Fil: Chernousov, V.. University of Alberta; CanadáFil: Gille, P.. Centre National de la Recherche Scientifique. Ecole Normale Supérieure; FranciaFil: Pianzola, Arturo. University of Alberta; Canadá. Universidad Centro de Altos Estudios en Ciencias Exactas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Yahorau, U.. University of Alberta; CanadáElsevier2014-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/32669Chernousov, V.; Gille, P.; Pianzola, Arturo; Yahorau, U.; A cohomological proof of Peterson-Kac's theorem of conjugacy of Cartan subalgebras of affine Kac-Moody Lie algebras; Elsevier; Journal of Algebra; 399; 2-2014; 55-780021-8693CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1205.0669info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0021869313005577info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jalgebra.2013.09.037info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:55:35Zoai:ri.conicet.gov.ar:11336/32669instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:55:35.889CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
A cohomological proof of Peterson-Kac's theorem of conjugacy of Cartan subalgebras of affine Kac-Moody Lie algebras |
title |
A cohomological proof of Peterson-Kac's theorem of conjugacy of Cartan subalgebras of affine Kac-Moody Lie algebras |
spellingShingle |
A cohomological proof of Peterson-Kac's theorem of conjugacy of Cartan subalgebras of affine Kac-Moody Lie algebras Chernousov, V. Conjucacy Cartan Subalgebras Affine Kac-Moody Lie Algebras Non-Abelian Cohomology |
title_short |
A cohomological proof of Peterson-Kac's theorem of conjugacy of Cartan subalgebras of affine Kac-Moody Lie algebras |
title_full |
A cohomological proof of Peterson-Kac's theorem of conjugacy of Cartan subalgebras of affine Kac-Moody Lie algebras |
title_fullStr |
A cohomological proof of Peterson-Kac's theorem of conjugacy of Cartan subalgebras of affine Kac-Moody Lie algebras |
title_full_unstemmed |
A cohomological proof of Peterson-Kac's theorem of conjugacy of Cartan subalgebras of affine Kac-Moody Lie algebras |
title_sort |
A cohomological proof of Peterson-Kac's theorem of conjugacy of Cartan subalgebras of affine Kac-Moody Lie algebras |
dc.creator.none.fl_str_mv |
Chernousov, V. Gille, P. Pianzola, Arturo Yahorau, U. |
author |
Chernousov, V. |
author_facet |
Chernousov, V. Gille, P. Pianzola, Arturo Yahorau, U. |
author_role |
author |
author2 |
Gille, P. Pianzola, Arturo Yahorau, U. |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
Conjucacy Cartan Subalgebras Affine Kac-Moody Lie Algebras Non-Abelian Cohomology |
topic |
Conjucacy Cartan Subalgebras Affine Kac-Moody Lie Algebras Non-Abelian Cohomology |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
This paper deals with the problem of conjugacy of Cartan subalgebras for affine Kac-Moody Lie algebras. Unlike the methods used by Peterson and Kac, our approach is entirely cohomological and geometric. It is deeply rooted on the theory of reductive group schemes developed by Demazure and Grothendieck, and on the work of J. Tits on buildings. Fil: Chernousov, V.. University of Alberta; Canadá Fil: Gille, P.. Centre National de la Recherche Scientifique. Ecole Normale Supérieure; Francia Fil: Pianzola, Arturo. University of Alberta; Canadá. Universidad Centro de Altos Estudios en Ciencias Exactas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Yahorau, U.. University of Alberta; Canadá |
description |
This paper deals with the problem of conjugacy of Cartan subalgebras for affine Kac-Moody Lie algebras. Unlike the methods used by Peterson and Kac, our approach is entirely cohomological and geometric. It is deeply rooted on the theory of reductive group schemes developed by Demazure and Grothendieck, and on the work of J. Tits on buildings. |
publishDate |
2014 |
dc.date.none.fl_str_mv |
2014-02 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/32669 Chernousov, V.; Gille, P.; Pianzola, Arturo; Yahorau, U.; A cohomological proof of Peterson-Kac's theorem of conjugacy of Cartan subalgebras of affine Kac-Moody Lie algebras; Elsevier; Journal of Algebra; 399; 2-2014; 55-78 0021-8693 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/32669 |
identifier_str_mv |
Chernousov, V.; Gille, P.; Pianzola, Arturo; Yahorau, U.; A cohomological proof of Peterson-Kac's theorem of conjugacy of Cartan subalgebras of affine Kac-Moody Lie algebras; Elsevier; Journal of Algebra; 399; 2-2014; 55-78 0021-8693 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1205.0669 info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0021869313005577 info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jalgebra.2013.09.037 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269354528342016 |
score |
13.13397 |