A cohomological proof of Peterson-Kac's theorem of conjugacy of Cartan subalgebras of affine Kac-Moody Lie algebras

Autores
Chernousov, V.; Gille, P.; Pianzola, Arturo; Yahorau, U.
Año de publicación
2014
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
This paper deals with the problem of conjugacy of Cartan subalgebras for affine Kac-Moody Lie algebras. Unlike the methods used by Peterson and Kac, our approach is entirely cohomological and geometric. It is deeply rooted on the theory of reductive group schemes developed by Demazure and Grothendieck, and on the work of J. Tits on buildings.
Fil: Chernousov, V.. University of Alberta; Canadá
Fil: Gille, P.. Centre National de la Recherche Scientifique. Ecole Normale Supérieure; Francia
Fil: Pianzola, Arturo. University of Alberta; Canadá. Universidad Centro de Altos Estudios en Ciencias Exactas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Yahorau, U.. University of Alberta; Canadá
Materia
Conjucacy
Cartan Subalgebras
Affine Kac-Moody Lie Algebras
Non-Abelian Cohomology
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/32669

id CONICETDig_486f4f2e41662bb3ce2e6e5a45bbe251
oai_identifier_str oai:ri.conicet.gov.ar:11336/32669
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling A cohomological proof of Peterson-Kac's theorem of conjugacy of Cartan subalgebras of affine Kac-Moody Lie algebrasChernousov, V.Gille, P.Pianzola, ArturoYahorau, U.ConjucacyCartan SubalgebrasAffine Kac-Moody Lie AlgebrasNon-Abelian Cohomologyhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1This paper deals with the problem of conjugacy of Cartan subalgebras for affine Kac-Moody Lie algebras. Unlike the methods used by Peterson and Kac, our approach is entirely cohomological and geometric. It is deeply rooted on the theory of reductive group schemes developed by Demazure and Grothendieck, and on the work of J. Tits on buildings.Fil: Chernousov, V.. University of Alberta; CanadáFil: Gille, P.. Centre National de la Recherche Scientifique. Ecole Normale Supérieure; FranciaFil: Pianzola, Arturo. University of Alberta; Canadá. Universidad Centro de Altos Estudios en Ciencias Exactas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Yahorau, U.. University of Alberta; CanadáElsevier2014-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/32669Chernousov, V.; Gille, P.; Pianzola, Arturo; Yahorau, U.; A cohomological proof of Peterson-Kac's theorem of conjugacy of Cartan subalgebras of affine Kac-Moody Lie algebras; Elsevier; Journal of Algebra; 399; 2-2014; 55-780021-8693CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1205.0669info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0021869313005577info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jalgebra.2013.09.037info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:55:35Zoai:ri.conicet.gov.ar:11336/32669instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:55:35.889CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv A cohomological proof of Peterson-Kac's theorem of conjugacy of Cartan subalgebras of affine Kac-Moody Lie algebras
title A cohomological proof of Peterson-Kac's theorem of conjugacy of Cartan subalgebras of affine Kac-Moody Lie algebras
spellingShingle A cohomological proof of Peterson-Kac's theorem of conjugacy of Cartan subalgebras of affine Kac-Moody Lie algebras
Chernousov, V.
Conjucacy
Cartan Subalgebras
Affine Kac-Moody Lie Algebras
Non-Abelian Cohomology
title_short A cohomological proof of Peterson-Kac's theorem of conjugacy of Cartan subalgebras of affine Kac-Moody Lie algebras
title_full A cohomological proof of Peterson-Kac's theorem of conjugacy of Cartan subalgebras of affine Kac-Moody Lie algebras
title_fullStr A cohomological proof of Peterson-Kac's theorem of conjugacy of Cartan subalgebras of affine Kac-Moody Lie algebras
title_full_unstemmed A cohomological proof of Peterson-Kac's theorem of conjugacy of Cartan subalgebras of affine Kac-Moody Lie algebras
title_sort A cohomological proof of Peterson-Kac's theorem of conjugacy of Cartan subalgebras of affine Kac-Moody Lie algebras
dc.creator.none.fl_str_mv Chernousov, V.
Gille, P.
Pianzola, Arturo
Yahorau, U.
author Chernousov, V.
author_facet Chernousov, V.
Gille, P.
Pianzola, Arturo
Yahorau, U.
author_role author
author2 Gille, P.
Pianzola, Arturo
Yahorau, U.
author2_role author
author
author
dc.subject.none.fl_str_mv Conjucacy
Cartan Subalgebras
Affine Kac-Moody Lie Algebras
Non-Abelian Cohomology
topic Conjucacy
Cartan Subalgebras
Affine Kac-Moody Lie Algebras
Non-Abelian Cohomology
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv This paper deals with the problem of conjugacy of Cartan subalgebras for affine Kac-Moody Lie algebras. Unlike the methods used by Peterson and Kac, our approach is entirely cohomological and geometric. It is deeply rooted on the theory of reductive group schemes developed by Demazure and Grothendieck, and on the work of J. Tits on buildings.
Fil: Chernousov, V.. University of Alberta; Canadá
Fil: Gille, P.. Centre National de la Recherche Scientifique. Ecole Normale Supérieure; Francia
Fil: Pianzola, Arturo. University of Alberta; Canadá. Universidad Centro de Altos Estudios en Ciencias Exactas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Yahorau, U.. University of Alberta; Canadá
description This paper deals with the problem of conjugacy of Cartan subalgebras for affine Kac-Moody Lie algebras. Unlike the methods used by Peterson and Kac, our approach is entirely cohomological and geometric. It is deeply rooted on the theory of reductive group schemes developed by Demazure and Grothendieck, and on the work of J. Tits on buildings.
publishDate 2014
dc.date.none.fl_str_mv 2014-02
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/32669
Chernousov, V.; Gille, P.; Pianzola, Arturo; Yahorau, U.; A cohomological proof of Peterson-Kac's theorem of conjugacy of Cartan subalgebras of affine Kac-Moody Lie algebras; Elsevier; Journal of Algebra; 399; 2-2014; 55-78
0021-8693
CONICET Digital
CONICET
url http://hdl.handle.net/11336/32669
identifier_str_mv Chernousov, V.; Gille, P.; Pianzola, Arturo; Yahorau, U.; A cohomological proof of Peterson-Kac's theorem of conjugacy of Cartan subalgebras of affine Kac-Moody Lie algebras; Elsevier; Journal of Algebra; 399; 2-2014; 55-78
0021-8693
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1205.0669
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0021869313005577
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jalgebra.2013.09.037
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier
publisher.none.fl_str_mv Elsevier
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842269354528342016
score 13.13397