Power laws and inverse motion modelling: Application to turbulence measurements from satellite images

Autores
Héas, Patrick; Mémin, Etienne; Heitz, Dominique; Mininni, Pablo Daniel
Año de publicación
2012
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
In the context of tackling the ill-posed inverse problem of motion estimation from image sequences, we propose to introduce prior knowledge on flow regularity given by turbulence statistical models. Prior regularity is formalised using turbulence power laws describing statistically self-similar structure of motion increments across scales. The motion estimation method minimises the error of an image observation model while constraining second-order structure function to behave as a power law within a prescribed range. Thanks to a Bayesian modelling framework, the motion estimation method is able to jointly infer the most likely power law directly from image data. The method is assessed on velocity fields of 2-D or quasi-2-D flows. Estimation accuracy is first evaluated on a synthetic image sequence of homogeneous and isotropic 2-D turbulence. Results obtained with the approach based on physics of fluids outperform state-of-the-art. Then, the method analyses atmospheric turbulence using a real meteorological image sequence. Selecting the most likely power law model enables the recovery of physical quantities, which are of major interest for turbulence atmospheric characterisation. In particular, from meteorological images we are able to estimate energy and enstrophy fluxes of turbulent cascades, which are in agreement with previous in situ measurements. © 2012 P. Héas.
Fil: Héas, Patrick. Institut National de Recherche en Informatique et en Automatique; Francia
Fil: Mémin, Etienne. Institut National de Recherche en Informatique et en Automatique; Francia
Fil: Heitz, Dominique. Irstea;
Fil: Mininni, Pablo Daniel. Universidad de Buenos Aires; Argentina. National Center for Atmospheric Research; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
Materia
ATMOSPHERIC TURBULENCE
BAYESIAN INFERENCE
ENERGY FLUX
IMAGE ASSIMILATION
MOTION STRUCTURE FUNCTIONS
POWER-LAWS
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/55646

id CONICETDig_aec009734ef80f7195f0fcc5319574a7
oai_identifier_str oai:ri.conicet.gov.ar:11336/55646
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Power laws and inverse motion modelling: Application to turbulence measurements from satellite imagesHéas, PatrickMémin, EtienneHeitz, DominiqueMininni, Pablo DanielATMOSPHERIC TURBULENCEBAYESIAN INFERENCEENERGY FLUXIMAGE ASSIMILATIONMOTION STRUCTURE FUNCTIONSPOWER-LAWShttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1https://purl.org/becyt/ford/1.5https://purl.org/becyt/ford/1In the context of tackling the ill-posed inverse problem of motion estimation from image sequences, we propose to introduce prior knowledge on flow regularity given by turbulence statistical models. Prior regularity is formalised using turbulence power laws describing statistically self-similar structure of motion increments across scales. The motion estimation method minimises the error of an image observation model while constraining second-order structure function to behave as a power law within a prescribed range. Thanks to a Bayesian modelling framework, the motion estimation method is able to jointly infer the most likely power law directly from image data. The method is assessed on velocity fields of 2-D or quasi-2-D flows. Estimation accuracy is first evaluated on a synthetic image sequence of homogeneous and isotropic 2-D turbulence. Results obtained with the approach based on physics of fluids outperform state-of-the-art. Then, the method analyses atmospheric turbulence using a real meteorological image sequence. Selecting the most likely power law model enables the recovery of physical quantities, which are of major interest for turbulence atmospheric characterisation. In particular, from meteorological images we are able to estimate energy and enstrophy fluxes of turbulent cascades, which are in agreement with previous in situ measurements. © 2012 P. Héas.Fil: Héas, Patrick. Institut National de Recherche en Informatique et en Automatique; FranciaFil: Mémin, Etienne. Institut National de Recherche en Informatique et en Automatique; FranciaFil: Heitz, Dominique. Irstea;Fil: Mininni, Pablo Daniel. Universidad de Buenos Aires; Argentina. National Center for Atmospheric Research; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; ArgentinaWiley Blackwell Publishing, Inc2012-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/55646Héas, Patrick; Mémin, Etienne; Heitz, Dominique; Mininni, Pablo Daniel; Power laws and inverse motion modelling: Application to turbulence measurements from satellite images; Wiley Blackwell Publishing, Inc; Tellus A; 64; 1; 1-2012; 1-240280-6495CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://www.tellusa.net/index.php/tellusa/article/view/10962info:eu-repo/semantics/altIdentifier/doi/10.3402/tellusa.v64i0.10962info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-22T11:10:27Zoai:ri.conicet.gov.ar:11336/55646instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-22 11:10:28.035CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Power laws and inverse motion modelling: Application to turbulence measurements from satellite images
title Power laws and inverse motion modelling: Application to turbulence measurements from satellite images
spellingShingle Power laws and inverse motion modelling: Application to turbulence measurements from satellite images
Héas, Patrick
ATMOSPHERIC TURBULENCE
BAYESIAN INFERENCE
ENERGY FLUX
IMAGE ASSIMILATION
MOTION STRUCTURE FUNCTIONS
POWER-LAWS
title_short Power laws and inverse motion modelling: Application to turbulence measurements from satellite images
title_full Power laws and inverse motion modelling: Application to turbulence measurements from satellite images
title_fullStr Power laws and inverse motion modelling: Application to turbulence measurements from satellite images
title_full_unstemmed Power laws and inverse motion modelling: Application to turbulence measurements from satellite images
title_sort Power laws and inverse motion modelling: Application to turbulence measurements from satellite images
dc.creator.none.fl_str_mv Héas, Patrick
Mémin, Etienne
Heitz, Dominique
Mininni, Pablo Daniel
author Héas, Patrick
author_facet Héas, Patrick
Mémin, Etienne
Heitz, Dominique
Mininni, Pablo Daniel
author_role author
author2 Mémin, Etienne
Heitz, Dominique
Mininni, Pablo Daniel
author2_role author
author
author
dc.subject.none.fl_str_mv ATMOSPHERIC TURBULENCE
BAYESIAN INFERENCE
ENERGY FLUX
IMAGE ASSIMILATION
MOTION STRUCTURE FUNCTIONS
POWER-LAWS
topic ATMOSPHERIC TURBULENCE
BAYESIAN INFERENCE
ENERGY FLUX
IMAGE ASSIMILATION
MOTION STRUCTURE FUNCTIONS
POWER-LAWS
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
https://purl.org/becyt/ford/1.5
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv In the context of tackling the ill-posed inverse problem of motion estimation from image sequences, we propose to introduce prior knowledge on flow regularity given by turbulence statistical models. Prior regularity is formalised using turbulence power laws describing statistically self-similar structure of motion increments across scales. The motion estimation method minimises the error of an image observation model while constraining second-order structure function to behave as a power law within a prescribed range. Thanks to a Bayesian modelling framework, the motion estimation method is able to jointly infer the most likely power law directly from image data. The method is assessed on velocity fields of 2-D or quasi-2-D flows. Estimation accuracy is first evaluated on a synthetic image sequence of homogeneous and isotropic 2-D turbulence. Results obtained with the approach based on physics of fluids outperform state-of-the-art. Then, the method analyses atmospheric turbulence using a real meteorological image sequence. Selecting the most likely power law model enables the recovery of physical quantities, which are of major interest for turbulence atmospheric characterisation. In particular, from meteorological images we are able to estimate energy and enstrophy fluxes of turbulent cascades, which are in agreement with previous in situ measurements. © 2012 P. Héas.
Fil: Héas, Patrick. Institut National de Recherche en Informatique et en Automatique; Francia
Fil: Mémin, Etienne. Institut National de Recherche en Informatique et en Automatique; Francia
Fil: Heitz, Dominique. Irstea;
Fil: Mininni, Pablo Daniel. Universidad de Buenos Aires; Argentina. National Center for Atmospheric Research; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
description In the context of tackling the ill-posed inverse problem of motion estimation from image sequences, we propose to introduce prior knowledge on flow regularity given by turbulence statistical models. Prior regularity is formalised using turbulence power laws describing statistically self-similar structure of motion increments across scales. The motion estimation method minimises the error of an image observation model while constraining second-order structure function to behave as a power law within a prescribed range. Thanks to a Bayesian modelling framework, the motion estimation method is able to jointly infer the most likely power law directly from image data. The method is assessed on velocity fields of 2-D or quasi-2-D flows. Estimation accuracy is first evaluated on a synthetic image sequence of homogeneous and isotropic 2-D turbulence. Results obtained with the approach based on physics of fluids outperform state-of-the-art. Then, the method analyses atmospheric turbulence using a real meteorological image sequence. Selecting the most likely power law model enables the recovery of physical quantities, which are of major interest for turbulence atmospheric characterisation. In particular, from meteorological images we are able to estimate energy and enstrophy fluxes of turbulent cascades, which are in agreement with previous in situ measurements. © 2012 P. Héas.
publishDate 2012
dc.date.none.fl_str_mv 2012-01
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/55646
Héas, Patrick; Mémin, Etienne; Heitz, Dominique; Mininni, Pablo Daniel; Power laws and inverse motion modelling: Application to turbulence measurements from satellite images; Wiley Blackwell Publishing, Inc; Tellus A; 64; 1; 1-2012; 1-24
0280-6495
CONICET Digital
CONICET
url http://hdl.handle.net/11336/55646
identifier_str_mv Héas, Patrick; Mémin, Etienne; Heitz, Dominique; Mininni, Pablo Daniel; Power laws and inverse motion modelling: Application to turbulence measurements from satellite images; Wiley Blackwell Publishing, Inc; Tellus A; 64; 1; 1-2012; 1-24
0280-6495
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://www.tellusa.net/index.php/tellusa/article/view/10962
info:eu-repo/semantics/altIdentifier/doi/10.3402/tellusa.v64i0.10962
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Wiley Blackwell Publishing, Inc
publisher.none.fl_str_mv Wiley Blackwell Publishing, Inc
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846781465429278720
score 12.982451