A Bayesian Technique for Real and Integer Parameters Estimation in Linear Models and its Application to GNSS High Precision Positioning

Autores
García, Javier G.; Roncagliolo, Pedro A.; Muravchik, Carlos Horacio
Año de publicación
2016
Idioma
inglés
Tipo de recurso
artículo
Estado
versión enviada
Descripción
A novel Bayesian technique for the joint estimation of real and integer parameters in a linear measurement model is presented. The integer parameters take values on a finite set, and the real ones are assumed to be a Gaussian random vector. The posterior distribution of these parameters is sequentially determined as new measurements are incorporated. This is a mixed distribution with a Gaussian continuous part and a discrete one. Estimators for the integer and real parameters are derived from this posterior distribution. A Maximum A Posteriori (MAP) estimator modified with the addition of a confidence threshold is used for the integer part and a Minimum Mean Squared Error (MMSE) is used for the real parameters. Two different cases are addressed: i) both real and integer parameters are time invariant and ii) the integer parameters are time invariant but the real ones are time varying. Our technique is applied to the GNSS carrier phase ambiguity resolution problem, that is key for high precision positioning applications. The good performance of the proposed technique is illustrated through simulations in different scenarios where different kind of measurements as well as different satellite visibility conditions are considered. Comparisons with state-of-the-art ambiguity solving algorithms confirm performance improvement. The new method is shown to be useful not only in the estimation stage but also for validating the estimates ensuring a predefined success rate through proper threshold selection.
Materia
Ingeniería Eléctrica y Electrónica
Bayesian estimation
carrier phase ambiguity resolution
GNSS
integer parameter estimation
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nd/4.0/
Repositorio
CIC Digital (CICBA)
Institución
Comisión de Investigaciones Científicas de la Provincia de Buenos Aires
OAI Identificador
oai:digital.cic.gba.gob.ar:11746/2211

id CICBA_99a0912606d930d413dd95482e1b6865
oai_identifier_str oai:digital.cic.gba.gob.ar:11746/2211
network_acronym_str CICBA
repository_id_str 9441
network_name_str CIC Digital (CICBA)
spelling A Bayesian Technique for Real and Integer Parameters Estimation in Linear Models and its Application to GNSS High Precision PositioningGarcía, Javier G.Roncagliolo, Pedro A.Muravchik, Carlos HoracioIngeniería Eléctrica y ElectrónicaBayesian estimationcarrier phase ambiguity resolutionGNSSinteger parameter estimationA novel Bayesian technique for the joint estimation of real and integer parameters in a linear measurement model is presented. The integer parameters take values on a finite set, and the real ones are assumed to be a Gaussian random vector. The posterior distribution of these parameters is sequentially determined as new measurements are incorporated. This is a mixed distribution with a Gaussian continuous part and a discrete one. Estimators for the integer and real parameters are derived from this posterior distribution. A Maximum A Posteriori (MAP) estimator modified with the addition of a confidence threshold is used for the integer part and a Minimum Mean Squared Error (MMSE) is used for the real parameters. Two different cases are addressed: i) both real and integer parameters are time invariant and ii) the integer parameters are time invariant but the real ones are time varying. Our technique is applied to the GNSS carrier phase ambiguity resolution problem, that is key for high precision positioning applications. The good performance of the proposed technique is illustrated through simulations in different scenarios where different kind of measurements as well as different satellite visibility conditions are considered. Comparisons with state-of-the-art ambiguity solving algorithms confirm performance improvement. The new method is shown to be useful not only in the estimation stage but also for validating the estimates ensuring a predefined success rate through proper threshold selection.IEEE Signal Processing Society2016-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/submittedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttps://digital.cic.gba.gob.ar/handle/11746/2211enginfo:eu-repo/semantics/altIdentifier/doi/10.1109/TSP.2015.2500195info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nd/4.0/reponame:CIC Digital (CICBA)instname:Comisión de Investigaciones Científicas de la Provincia de Buenos Airesinstacron:CICBA2025-10-23T11:14:36Zoai:digital.cic.gba.gob.ar:11746/2211Institucionalhttp://digital.cic.gba.gob.arOrganismo científico-tecnológicoNo correspondehttp://digital.cic.gba.gob.ar/oai/snrdmarisa.degiusti@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:94412025-10-23 11:14:36.559CIC Digital (CICBA) - Comisión de Investigaciones Científicas de la Provincia de Buenos Airesfalse
dc.title.none.fl_str_mv A Bayesian Technique for Real and Integer Parameters Estimation in Linear Models and its Application to GNSS High Precision Positioning
title A Bayesian Technique for Real and Integer Parameters Estimation in Linear Models and its Application to GNSS High Precision Positioning
spellingShingle A Bayesian Technique for Real and Integer Parameters Estimation in Linear Models and its Application to GNSS High Precision Positioning
García, Javier G.
Ingeniería Eléctrica y Electrónica
Bayesian estimation
carrier phase ambiguity resolution
GNSS
integer parameter estimation
title_short A Bayesian Technique for Real and Integer Parameters Estimation in Linear Models and its Application to GNSS High Precision Positioning
title_full A Bayesian Technique for Real and Integer Parameters Estimation in Linear Models and its Application to GNSS High Precision Positioning
title_fullStr A Bayesian Technique for Real and Integer Parameters Estimation in Linear Models and its Application to GNSS High Precision Positioning
title_full_unstemmed A Bayesian Technique for Real and Integer Parameters Estimation in Linear Models and its Application to GNSS High Precision Positioning
title_sort A Bayesian Technique for Real and Integer Parameters Estimation in Linear Models and its Application to GNSS High Precision Positioning
dc.creator.none.fl_str_mv García, Javier G.
Roncagliolo, Pedro A.
Muravchik, Carlos Horacio
author García, Javier G.
author_facet García, Javier G.
Roncagliolo, Pedro A.
Muravchik, Carlos Horacio
author_role author
author2 Roncagliolo, Pedro A.
Muravchik, Carlos Horacio
author2_role author
author
dc.subject.none.fl_str_mv Ingeniería Eléctrica y Electrónica
Bayesian estimation
carrier phase ambiguity resolution
GNSS
integer parameter estimation
topic Ingeniería Eléctrica y Electrónica
Bayesian estimation
carrier phase ambiguity resolution
GNSS
integer parameter estimation
dc.description.none.fl_txt_mv A novel Bayesian technique for the joint estimation of real and integer parameters in a linear measurement model is presented. The integer parameters take values on a finite set, and the real ones are assumed to be a Gaussian random vector. The posterior distribution of these parameters is sequentially determined as new measurements are incorporated. This is a mixed distribution with a Gaussian continuous part and a discrete one. Estimators for the integer and real parameters are derived from this posterior distribution. A Maximum A Posteriori (MAP) estimator modified with the addition of a confidence threshold is used for the integer part and a Minimum Mean Squared Error (MMSE) is used for the real parameters. Two different cases are addressed: i) both real and integer parameters are time invariant and ii) the integer parameters are time invariant but the real ones are time varying. Our technique is applied to the GNSS carrier phase ambiguity resolution problem, that is key for high precision positioning applications. The good performance of the proposed technique is illustrated through simulations in different scenarios where different kind of measurements as well as different satellite visibility conditions are considered. Comparisons with state-of-the-art ambiguity solving algorithms confirm performance improvement. The new method is shown to be useful not only in the estimation stage but also for validating the estimates ensuring a predefined success rate through proper threshold selection.
description A novel Bayesian technique for the joint estimation of real and integer parameters in a linear measurement model is presented. The integer parameters take values on a finite set, and the real ones are assumed to be a Gaussian random vector. The posterior distribution of these parameters is sequentially determined as new measurements are incorporated. This is a mixed distribution with a Gaussian continuous part and a discrete one. Estimators for the integer and real parameters are derived from this posterior distribution. A Maximum A Posteriori (MAP) estimator modified with the addition of a confidence threshold is used for the integer part and a Minimum Mean Squared Error (MMSE) is used for the real parameters. Two different cases are addressed: i) both real and integer parameters are time invariant and ii) the integer parameters are time invariant but the real ones are time varying. Our technique is applied to the GNSS carrier phase ambiguity resolution problem, that is key for high precision positioning applications. The good performance of the proposed technique is illustrated through simulations in different scenarios where different kind of measurements as well as different satellite visibility conditions are considered. Comparisons with state-of-the-art ambiguity solving algorithms confirm performance improvement. The new method is shown to be useful not only in the estimation stage but also for validating the estimates ensuring a predefined success rate through proper threshold selection.
publishDate 2016
dc.date.none.fl_str_mv 2016-02
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/submittedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str submittedVersion
dc.identifier.none.fl_str_mv https://digital.cic.gba.gob.ar/handle/11746/2211
url https://digital.cic.gba.gob.ar/handle/11746/2211
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1109/TSP.2015.2500195
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nd/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nd/4.0/
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv IEEE Signal Processing Society
publisher.none.fl_str_mv IEEE Signal Processing Society
dc.source.none.fl_str_mv reponame:CIC Digital (CICBA)
instname:Comisión de Investigaciones Científicas de la Provincia de Buenos Aires
instacron:CICBA
reponame_str CIC Digital (CICBA)
collection CIC Digital (CICBA)
instname_str Comisión de Investigaciones Científicas de la Provincia de Buenos Aires
instacron_str CICBA
institution CICBA
repository.name.fl_str_mv CIC Digital (CICBA) - Comisión de Investigaciones Científicas de la Provincia de Buenos Aires
repository.mail.fl_str_mv marisa.degiusti@sedici.unlp.edu.ar
_version_ 1846783902140596224
score 12.982451