Thermodynamic parameters of adsorption of 1,10-phenanthroline and 2,2′-bipyridyl on hematite, kaolinite and montmorillonites

Autores
Ferreiro, Eladio Avelino; de Bussetti, Silvia G.
Año de publicación
2007
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The thermodynamic equilibrium constant (K), free energy (ΔG), enthalpy (ΔH), entropy (ΔS), isosteric heat (qst) of adsorption, and the constant (kL) of the Langmuir adsorption equation using the adsorption isotherms (pH 6) of 1,10-phenanthroline (OP) and 2,2′-bipyridyl (BP) on hematite, sodium kaolinite (Na-K), sodium montmorillonite (Na-Mt) and hydroxy-aluminium montmorillonite (HAM) were obtained. The magnitude of enthalpy and isosteric heat established that adsorption on these minerals is a physical phenomenon. The equilibrium reaction constant (K) was used to calculate the enthalpy (ΔH) and free energy (ΔG) for OP adsorption, parameters which could not be obtained by applying the constant (kL) of the Langmuir equation of adsorption. The isosteric heat for hematite, Na-K, Na-Mt and HAM in kJ mol-1 was: 10.8-0.66, 13.4-28.6, 9.12-16.0 and 13.5-6.35, respectively. The equilibrium reaction constant (K) was similarly used to obtain the enthalpy (ΔH) and free energy (ΔG) for BP adsorption on hematite, Na-K and Na-Mt, but this was not possible in the case of HAM. The kL constant did not behave as K in the adsorption of BP; it was only possible to obtain ΔG with values close to the order of magnitude of those obtained with K, but not ΔH. Isosteric heat in kJ mol-1 was -28.2 to -17.1 for hematite, 0.388-7.43 for Na-K, 3.55-7.47 for Na-Mt, and -0.363 to 2.30 for HAM. The adsorption of OP on hematite, Na-K, Na-Mt and HAM is an exothermic process, as is BP adsorption on Na-K and Na-Mt. BP adsorption on HAM, however, is endothermic at low surface cover and exothermic at a surface cover greater than 0.5 mol kg-1. The negative ΔS values obtained for both systems of adsorption are likely due to the displacement of solvent molecules on the surface by OP and BP solutes. In the case of OP adsorption hematite presents a heterogeneous surface and the other minerals a homogeneous surface. In the case of BP, all the minerals present heterogeneous surfaces.
Fil: Ferreiro, Eladio Avelino. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; Argentina. Universidad Nacional del Sur. Departamento de Agronomía; Argentina
Fil: de Bussetti, Silvia G.. Universidad Nacional del Sur. Departamento de Agronomía; Argentina
Materia
Adsorption
Bipyridine
Enthalpy
Entropy
Free Energy
Hematite
Hydroxy-Aluminium Montmorillonite
Isosteric Heat
Kaolinite
Montmorillonite
Orthophenanthroline
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/80043

id CONICETDig_1693006008b60c060923e2823139977f
oai_identifier_str oai:ri.conicet.gov.ar:11336/80043
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Thermodynamic parameters of adsorption of 1,10-phenanthroline and 2,2′-bipyridyl on hematite, kaolinite and montmorillonitesFerreiro, Eladio Avelinode Bussetti, Silvia G.AdsorptionBipyridineEnthalpyEntropyFree EnergyHematiteHydroxy-Aluminium MontmorilloniteIsosteric HeatKaoliniteMontmorilloniteOrthophenanthrolinehttps://purl.org/becyt/ford/4.1https://purl.org/becyt/ford/4The thermodynamic equilibrium constant (K), free energy (ΔG), enthalpy (ΔH), entropy (ΔS), isosteric heat (qst) of adsorption, and the constant (kL) of the Langmuir adsorption equation using the adsorption isotherms (pH 6) of 1,10-phenanthroline (OP) and 2,2′-bipyridyl (BP) on hematite, sodium kaolinite (Na-K), sodium montmorillonite (Na-Mt) and hydroxy-aluminium montmorillonite (HAM) were obtained. The magnitude of enthalpy and isosteric heat established that adsorption on these minerals is a physical phenomenon. The equilibrium reaction constant (K) was used to calculate the enthalpy (ΔH) and free energy (ΔG) for OP adsorption, parameters which could not be obtained by applying the constant (kL) of the Langmuir equation of adsorption. The isosteric heat for hematite, Na-K, Na-Mt and HAM in kJ mol-1 was: 10.8-0.66, 13.4-28.6, 9.12-16.0 and 13.5-6.35, respectively. The equilibrium reaction constant (K) was similarly used to obtain the enthalpy (ΔH) and free energy (ΔG) for BP adsorption on hematite, Na-K and Na-Mt, but this was not possible in the case of HAM. The kL constant did not behave as K in the adsorption of BP; it was only possible to obtain ΔG with values close to the order of magnitude of those obtained with K, but not ΔH. Isosteric heat in kJ mol-1 was -28.2 to -17.1 for hematite, 0.388-7.43 for Na-K, 3.55-7.47 for Na-Mt, and -0.363 to 2.30 for HAM. The adsorption of OP on hematite, Na-K, Na-Mt and HAM is an exothermic process, as is BP adsorption on Na-K and Na-Mt. BP adsorption on HAM, however, is endothermic at low surface cover and exothermic at a surface cover greater than 0.5 mol kg-1. The negative ΔS values obtained for both systems of adsorption are likely due to the displacement of solvent molecules on the surface by OP and BP solutes. In the case of OP adsorption hematite presents a heterogeneous surface and the other minerals a homogeneous surface. In the case of BP, all the minerals present heterogeneous surfaces.Fil: Ferreiro, Eladio Avelino. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; Argentina. Universidad Nacional del Sur. Departamento de Agronomía; ArgentinaFil: de Bussetti, Silvia G.. Universidad Nacional del Sur. Departamento de Agronomía; ArgentinaElsevier Science2007-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/80043Ferreiro, Eladio Avelino; de Bussetti, Silvia G.; Thermodynamic parameters of adsorption of 1,10-phenanthroline and 2,2′-bipyridyl on hematite, kaolinite and montmorillonites; Elsevier Science; Colloids and Surfaces A: Physicochemical and Engineering Aspects; 301; 1-3; 7-2007; 117-1280927-7757CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.colsurfa.2006.12.032info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S092777570600968Xinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:16:19Zoai:ri.conicet.gov.ar:11336/80043instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:16:20.169CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Thermodynamic parameters of adsorption of 1,10-phenanthroline and 2,2′-bipyridyl on hematite, kaolinite and montmorillonites
title Thermodynamic parameters of adsorption of 1,10-phenanthroline and 2,2′-bipyridyl on hematite, kaolinite and montmorillonites
spellingShingle Thermodynamic parameters of adsorption of 1,10-phenanthroline and 2,2′-bipyridyl on hematite, kaolinite and montmorillonites
Ferreiro, Eladio Avelino
Adsorption
Bipyridine
Enthalpy
Entropy
Free Energy
Hematite
Hydroxy-Aluminium Montmorillonite
Isosteric Heat
Kaolinite
Montmorillonite
Orthophenanthroline
title_short Thermodynamic parameters of adsorption of 1,10-phenanthroline and 2,2′-bipyridyl on hematite, kaolinite and montmorillonites
title_full Thermodynamic parameters of adsorption of 1,10-phenanthroline and 2,2′-bipyridyl on hematite, kaolinite and montmorillonites
title_fullStr Thermodynamic parameters of adsorption of 1,10-phenanthroline and 2,2′-bipyridyl on hematite, kaolinite and montmorillonites
title_full_unstemmed Thermodynamic parameters of adsorption of 1,10-phenanthroline and 2,2′-bipyridyl on hematite, kaolinite and montmorillonites
title_sort Thermodynamic parameters of adsorption of 1,10-phenanthroline and 2,2′-bipyridyl on hematite, kaolinite and montmorillonites
dc.creator.none.fl_str_mv Ferreiro, Eladio Avelino
de Bussetti, Silvia G.
author Ferreiro, Eladio Avelino
author_facet Ferreiro, Eladio Avelino
de Bussetti, Silvia G.
author_role author
author2 de Bussetti, Silvia G.
author2_role author
dc.subject.none.fl_str_mv Adsorption
Bipyridine
Enthalpy
Entropy
Free Energy
Hematite
Hydroxy-Aluminium Montmorillonite
Isosteric Heat
Kaolinite
Montmorillonite
Orthophenanthroline
topic Adsorption
Bipyridine
Enthalpy
Entropy
Free Energy
Hematite
Hydroxy-Aluminium Montmorillonite
Isosteric Heat
Kaolinite
Montmorillonite
Orthophenanthroline
purl_subject.fl_str_mv https://purl.org/becyt/ford/4.1
https://purl.org/becyt/ford/4
dc.description.none.fl_txt_mv The thermodynamic equilibrium constant (K), free energy (ΔG), enthalpy (ΔH), entropy (ΔS), isosteric heat (qst) of adsorption, and the constant (kL) of the Langmuir adsorption equation using the adsorption isotherms (pH 6) of 1,10-phenanthroline (OP) and 2,2′-bipyridyl (BP) on hematite, sodium kaolinite (Na-K), sodium montmorillonite (Na-Mt) and hydroxy-aluminium montmorillonite (HAM) were obtained. The magnitude of enthalpy and isosteric heat established that adsorption on these minerals is a physical phenomenon. The equilibrium reaction constant (K) was used to calculate the enthalpy (ΔH) and free energy (ΔG) for OP adsorption, parameters which could not be obtained by applying the constant (kL) of the Langmuir equation of adsorption. The isosteric heat for hematite, Na-K, Na-Mt and HAM in kJ mol-1 was: 10.8-0.66, 13.4-28.6, 9.12-16.0 and 13.5-6.35, respectively. The equilibrium reaction constant (K) was similarly used to obtain the enthalpy (ΔH) and free energy (ΔG) for BP adsorption on hematite, Na-K and Na-Mt, but this was not possible in the case of HAM. The kL constant did not behave as K in the adsorption of BP; it was only possible to obtain ΔG with values close to the order of magnitude of those obtained with K, but not ΔH. Isosteric heat in kJ mol-1 was -28.2 to -17.1 for hematite, 0.388-7.43 for Na-K, 3.55-7.47 for Na-Mt, and -0.363 to 2.30 for HAM. The adsorption of OP on hematite, Na-K, Na-Mt and HAM is an exothermic process, as is BP adsorption on Na-K and Na-Mt. BP adsorption on HAM, however, is endothermic at low surface cover and exothermic at a surface cover greater than 0.5 mol kg-1. The negative ΔS values obtained for both systems of adsorption are likely due to the displacement of solvent molecules on the surface by OP and BP solutes. In the case of OP adsorption hematite presents a heterogeneous surface and the other minerals a homogeneous surface. In the case of BP, all the minerals present heterogeneous surfaces.
Fil: Ferreiro, Eladio Avelino. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; Argentina. Universidad Nacional del Sur. Departamento de Agronomía; Argentina
Fil: de Bussetti, Silvia G.. Universidad Nacional del Sur. Departamento de Agronomía; Argentina
description The thermodynamic equilibrium constant (K), free energy (ΔG), enthalpy (ΔH), entropy (ΔS), isosteric heat (qst) of adsorption, and the constant (kL) of the Langmuir adsorption equation using the adsorption isotherms (pH 6) of 1,10-phenanthroline (OP) and 2,2′-bipyridyl (BP) on hematite, sodium kaolinite (Na-K), sodium montmorillonite (Na-Mt) and hydroxy-aluminium montmorillonite (HAM) were obtained. The magnitude of enthalpy and isosteric heat established that adsorption on these minerals is a physical phenomenon. The equilibrium reaction constant (K) was used to calculate the enthalpy (ΔH) and free energy (ΔG) for OP adsorption, parameters which could not be obtained by applying the constant (kL) of the Langmuir equation of adsorption. The isosteric heat for hematite, Na-K, Na-Mt and HAM in kJ mol-1 was: 10.8-0.66, 13.4-28.6, 9.12-16.0 and 13.5-6.35, respectively. The equilibrium reaction constant (K) was similarly used to obtain the enthalpy (ΔH) and free energy (ΔG) for BP adsorption on hematite, Na-K and Na-Mt, but this was not possible in the case of HAM. The kL constant did not behave as K in the adsorption of BP; it was only possible to obtain ΔG with values close to the order of magnitude of those obtained with K, but not ΔH. Isosteric heat in kJ mol-1 was -28.2 to -17.1 for hematite, 0.388-7.43 for Na-K, 3.55-7.47 for Na-Mt, and -0.363 to 2.30 for HAM. The adsorption of OP on hematite, Na-K, Na-Mt and HAM is an exothermic process, as is BP adsorption on Na-K and Na-Mt. BP adsorption on HAM, however, is endothermic at low surface cover and exothermic at a surface cover greater than 0.5 mol kg-1. The negative ΔS values obtained for both systems of adsorption are likely due to the displacement of solvent molecules on the surface by OP and BP solutes. In the case of OP adsorption hematite presents a heterogeneous surface and the other minerals a homogeneous surface. In the case of BP, all the minerals present heterogeneous surfaces.
publishDate 2007
dc.date.none.fl_str_mv 2007-07
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/80043
Ferreiro, Eladio Avelino; de Bussetti, Silvia G.; Thermodynamic parameters of adsorption of 1,10-phenanthroline and 2,2′-bipyridyl on hematite, kaolinite and montmorillonites; Elsevier Science; Colloids and Surfaces A: Physicochemical and Engineering Aspects; 301; 1-3; 7-2007; 117-128
0927-7757
CONICET Digital
CONICET
url http://hdl.handle.net/11336/80043
identifier_str_mv Ferreiro, Eladio Avelino; de Bussetti, Silvia G.; Thermodynamic parameters of adsorption of 1,10-phenanthroline and 2,2′-bipyridyl on hematite, kaolinite and montmorillonites; Elsevier Science; Colloids and Surfaces A: Physicochemical and Engineering Aspects; 301; 1-3; 7-2007; 117-128
0927-7757
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1016/j.colsurfa.2006.12.032
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S092777570600968X
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier Science
publisher.none.fl_str_mv Elsevier Science
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614106678558720
score 13.070432