On the First Hochschild Cohomology Group of a Cluster-Tilted Algebra
- Autores
- Assem, Ibrahim; Redondo, Maria Julia; Schiffler, Ralf
- Año de publicación
- 2015
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Given a cluster-tilted algebra B, we study its first Hochschild cohomology group HH1(B) with coefficients in the B-B-bimodule B. If C is a tilted algebra such that B is the relation-extension of C, then we show that if B is tame, then HH1(B) is isomorphic, as a kvector space, to the direct sum of HH1(C) with knB,C , where nB,C is an invariant linking the bound quivers of B and C. In the representation-finite case, HH1(B) can be read off simply by looking at the quiver of B.
Fil: Assem, Ibrahim. University Of Sherbrooke; Canadá
Fil: Redondo, Maria Julia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Bahía Blanca. Instituto de Matemática Bahía Blanca (i); Argentina. Universidad Nacional del Sur. Departamento de Matemática; Argentina
Fil: Schiffler, Ralf. University Of Sherbrooke; Canadá - Materia
-
Cluster-Tilded Algebra
Hochschild Cohomology - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/11872
Ver los metadatos del registro completo
id |
CONICETDig_147dfc6ae40141fb765055a299a5c6ad |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/11872 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
On the First Hochschild Cohomology Group of a Cluster-Tilted AlgebraAssem, IbrahimRedondo, Maria JuliaSchiffler, RalfCluster-Tilded AlgebraHochschild Cohomologyhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Given a cluster-tilted algebra B, we study its first Hochschild cohomology group HH1(B) with coefficients in the B-B-bimodule B. If C is a tilted algebra such that B is the relation-extension of C, then we show that if B is tame, then HH1(B) is isomorphic, as a kvector space, to the direct sum of HH1(C) with knB,C , where nB,C is an invariant linking the bound quivers of B and C. In the representation-finite case, HH1(B) can be read off simply by looking at the quiver of B.Fil: Assem, Ibrahim. University Of Sherbrooke; CanadáFil: Redondo, Maria Julia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Bahía Blanca. Instituto de Matemática Bahía Blanca (i); Argentina. Universidad Nacional del Sur. Departamento de Matemática; ArgentinaFil: Schiffler, Ralf. University Of Sherbrooke; CanadáSpringer2015-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/11872Assem, Ibrahim; Redondo, Maria Julia; Schiffler, Ralf; On the First Hochschild Cohomology Group of a Cluster-Tilted Algebra; Springer; Algebras And Representation Theory; 18; 6; 12-2015; 1547-15761386-923Xenginfo:eu-repo/semantics/altIdentifier/url/http://link.springer.com/article/10.1007%2Fs10468-015-9551-xinfo:eu-repo/semantics/altIdentifier/doi/10.1007/s10468-015-9551-xinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:55:39Zoai:ri.conicet.gov.ar:11336/11872instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:55:39.357CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
On the First Hochschild Cohomology Group of a Cluster-Tilted Algebra |
title |
On the First Hochschild Cohomology Group of a Cluster-Tilted Algebra |
spellingShingle |
On the First Hochschild Cohomology Group of a Cluster-Tilted Algebra Assem, Ibrahim Cluster-Tilded Algebra Hochschild Cohomology |
title_short |
On the First Hochschild Cohomology Group of a Cluster-Tilted Algebra |
title_full |
On the First Hochschild Cohomology Group of a Cluster-Tilted Algebra |
title_fullStr |
On the First Hochschild Cohomology Group of a Cluster-Tilted Algebra |
title_full_unstemmed |
On the First Hochschild Cohomology Group of a Cluster-Tilted Algebra |
title_sort |
On the First Hochschild Cohomology Group of a Cluster-Tilted Algebra |
dc.creator.none.fl_str_mv |
Assem, Ibrahim Redondo, Maria Julia Schiffler, Ralf |
author |
Assem, Ibrahim |
author_facet |
Assem, Ibrahim Redondo, Maria Julia Schiffler, Ralf |
author_role |
author |
author2 |
Redondo, Maria Julia Schiffler, Ralf |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Cluster-Tilded Algebra Hochschild Cohomology |
topic |
Cluster-Tilded Algebra Hochschild Cohomology |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Given a cluster-tilted algebra B, we study its first Hochschild cohomology group HH1(B) with coefficients in the B-B-bimodule B. If C is a tilted algebra such that B is the relation-extension of C, then we show that if B is tame, then HH1(B) is isomorphic, as a kvector space, to the direct sum of HH1(C) with knB,C , where nB,C is an invariant linking the bound quivers of B and C. In the representation-finite case, HH1(B) can be read off simply by looking at the quiver of B. Fil: Assem, Ibrahim. University Of Sherbrooke; Canadá Fil: Redondo, Maria Julia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Bahía Blanca. Instituto de Matemática Bahía Blanca (i); Argentina. Universidad Nacional del Sur. Departamento de Matemática; Argentina Fil: Schiffler, Ralf. University Of Sherbrooke; Canadá |
description |
Given a cluster-tilted algebra B, we study its first Hochschild cohomology group HH1(B) with coefficients in the B-B-bimodule B. If C is a tilted algebra such that B is the relation-extension of C, then we show that if B is tame, then HH1(B) is isomorphic, as a kvector space, to the direct sum of HH1(C) with knB,C , where nB,C is an invariant linking the bound quivers of B and C. In the representation-finite case, HH1(B) can be read off simply by looking at the quiver of B. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015-12 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/11872 Assem, Ibrahim; Redondo, Maria Julia; Schiffler, Ralf; On the First Hochschild Cohomology Group of a Cluster-Tilted Algebra; Springer; Algebras And Representation Theory; 18; 6; 12-2015; 1547-1576 1386-923X |
url |
http://hdl.handle.net/11336/11872 |
identifier_str_mv |
Assem, Ibrahim; Redondo, Maria Julia; Schiffler, Ralf; On the First Hochschild Cohomology Group of a Cluster-Tilted Algebra; Springer; Algebras And Representation Theory; 18; 6; 12-2015; 1547-1576 1386-923X |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://link.springer.com/article/10.1007%2Fs10468-015-9551-x info:eu-repo/semantics/altIdentifier/doi/10.1007/s10468-015-9551-x |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Springer |
publisher.none.fl_str_mv |
Springer |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269358030585856 |
score |
13.13397 |