Elasticity assessment of electrospun nanofibrous vascular grafts: a comparison with femoral ovine arteries

Autores
Suarez Bagnasco, D.; Montini Ballarin, Florencia; Cymberknop, Leandro Javier; Balay, G.; Negreira, C.; Abraham, Gustavo Abel; Armentano, Ricardo Luis
Año de publicación
2014
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Development of successful small-diameter vascular grafts constitutes a real challenge to biomaterial engineering. In most cases these grafts fail in-vivo due to the presence of a mechanical mismatch between the native vessel and the vascular graft. Biomechanical characterization of real native vessels provides significant information for synthetic grafts development. Electrospun nanofibrous vascular grafts emerge as a potential tailor made solution to this problem. PLLA-electrospun nanofibrous tubular structures were prepared and selected as model bioresorbable grafts. An experimental setup, using gold standard and high resolution ultrasound techniques, was adapted to characterize in vitro the Poly(L-lactic acid) (PLLA) electrospun structures. The grafts were subjected to near physiologic pulsated pressure conditions, following the pressure-diameter loop approach and the criteria stated in the international standard for cardiovascular implants-tubular vascular prostheses. Additionally, ovine femoral arteries were subjected to a similar evaluation. Measurements of pressure and diameter variations allowed the estimation of dynamical compliance (C%, 10-2 mmHg) and the pressure-strain elastic modulus (EPe, 106 dyn cm-2) of the abovementioned vessels (grafts and arteries). Nanofibrous PLLA showed a decrease in %C (1.38 ± 0.21, 0.93 ± 0.13 and 0.76 ± 0.15) concomitant to an increase in EPe (10.57 ± 0.97, 14.31 ± 1.47 and 17.63 ± 2.61) corresponding to pressure ranges of 50 to 90 mmHg, 80 to 120 mmHg and 100 to 150 mmHg, respectively. Furthermore, femoral arteries exhibited a decrease in %C (8.52 ± 1.15 and 0.79 ± 0.20) and an increase in EPe (1.66 ± 0.30 and 15.76 ± 4.78) corresponding to pressure ranges of 50-90 mmHg (elastin zone) and 100-130 mmHg (collagen zone). Arterial mechanics framework, extensively applied in our previous works, was successfully used to characterize PLLA vascular grafts in vitro, although its application can be directly extended to in vivo experiences, in conscious and chronically instrumented animals. The specific design and construction of the electrospun nanofibrous PLLA vascular grafts assessed in this work, showed similar mechanical properties as the ones observed in femoral arteries, at the collagen pressure range.
Fil: Suarez Bagnasco, D.. Universidad de la República. Facultad de Ciencias; Uruguay
Fil: Montini Ballarin, Florencia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; Argentina
Fil: Cymberknop, Leandro Javier. Universidad Tecnológica Nacional. Facultad Regional Buenos Aires; Argentina
Fil: Balay, G.. Universidad de la República. Facultad de Ciencias; Uruguay
Fil: Negreira, C.. Universidad de la República. Facultad de Ciencias; Uruguay
Fil: Abraham, Gustavo Abel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; Argentina
Fil: Armentano, Ricardo Luis. Universidad Tecnológica Nacional; Argentina. Universidad de la República; Uruguay. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Materia
Vascular Grafts
Electrospinning
Plla
Mechanical Properties
Pressure Diameter Loop
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/29530

id CONICETDig_15a0cfd7cd24925bc91e2a105ebf28f6
oai_identifier_str oai:ri.conicet.gov.ar:11336/29530
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Elasticity assessment of electrospun nanofibrous vascular grafts: a comparison with femoral ovine arteriesSuarez Bagnasco, D.Montini Ballarin, FlorenciaCymberknop, Leandro JavierBalay, G.Negreira, C.Abraham, Gustavo AbelArmentano, Ricardo LuisVascular GraftsElectrospinningPllaMechanical PropertiesPressure Diameter Loophttps://purl.org/becyt/ford/2.2https://purl.org/becyt/ford/2https://purl.org/becyt/ford/2.5https://purl.org/becyt/ford/2https://purl.org/becyt/ford/2.9https://purl.org/becyt/ford/2Development of successful small-diameter vascular grafts constitutes a real challenge to biomaterial engineering. In most cases these grafts fail in-vivo due to the presence of a mechanical mismatch between the native vessel and the vascular graft. Biomechanical characterization of real native vessels provides significant information for synthetic grafts development. Electrospun nanofibrous vascular grafts emerge as a potential tailor made solution to this problem. PLLA-electrospun nanofibrous tubular structures were prepared and selected as model bioresorbable grafts. An experimental setup, using gold standard and high resolution ultrasound techniques, was adapted to characterize in vitro the Poly(L-lactic acid) (PLLA) electrospun structures. The grafts were subjected to near physiologic pulsated pressure conditions, following the pressure-diameter loop approach and the criteria stated in the international standard for cardiovascular implants-tubular vascular prostheses. Additionally, ovine femoral arteries were subjected to a similar evaluation. Measurements of pressure and diameter variations allowed the estimation of dynamical compliance (C%, 10-2 mmHg) and the pressure-strain elastic modulus (EPe, 106 dyn cm-2) of the abovementioned vessels (grafts and arteries). Nanofibrous PLLA showed a decrease in %C (1.38 ± 0.21, 0.93 ± 0.13 and 0.76 ± 0.15) concomitant to an increase in EPe (10.57 ± 0.97, 14.31 ± 1.47 and 17.63 ± 2.61) corresponding to pressure ranges of 50 to 90 mmHg, 80 to 120 mmHg and 100 to 150 mmHg, respectively. Furthermore, femoral arteries exhibited a decrease in %C (8.52 ± 1.15 and 0.79 ± 0.20) and an increase in EPe (1.66 ± 0.30 and 15.76 ± 4.78) corresponding to pressure ranges of 50-90 mmHg (elastin zone) and 100-130 mmHg (collagen zone). Arterial mechanics framework, extensively applied in our previous works, was successfully used to characterize PLLA vascular grafts in vitro, although its application can be directly extended to in vivo experiences, in conscious and chronically instrumented animals. The specific design and construction of the electrospun nanofibrous PLLA vascular grafts assessed in this work, showed similar mechanical properties as the ones observed in femoral arteries, at the collagen pressure range.Fil: Suarez Bagnasco, D.. Universidad de la República. Facultad de Ciencias; UruguayFil: Montini Ballarin, Florencia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; ArgentinaFil: Cymberknop, Leandro Javier. Universidad Tecnológica Nacional. Facultad Regional Buenos Aires; ArgentinaFil: Balay, G.. Universidad de la República. Facultad de Ciencias; UruguayFil: Negreira, C.. Universidad de la República. Facultad de Ciencias; UruguayFil: Abraham, Gustavo Abel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; ArgentinaFil: Armentano, Ricardo Luis. Universidad Tecnológica Nacional; Argentina. Universidad de la República; Uruguay. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaElsevier2014-12-16info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/29530Suarez Bagnasco, D.; Montini Ballarin, Florencia; Cymberknop, Leandro Javier; Balay, G.; Negreira, C.; et al.; Elasticity assessment of electrospun nanofibrous vascular grafts: a comparison with femoral ovine arteries; Elsevier; Materials Science and Engineering: C; 45; 16-12-2014; 446-4540928-4931CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0928493114005864info:eu-repo/semantics/altIdentifier/doi/10.1016/j.msec.2014.09.016info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:43:51Zoai:ri.conicet.gov.ar:11336/29530instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:43:51.821CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Elasticity assessment of electrospun nanofibrous vascular grafts: a comparison with femoral ovine arteries
title Elasticity assessment of electrospun nanofibrous vascular grafts: a comparison with femoral ovine arteries
spellingShingle Elasticity assessment of electrospun nanofibrous vascular grafts: a comparison with femoral ovine arteries
Suarez Bagnasco, D.
Vascular Grafts
Electrospinning
Plla
Mechanical Properties
Pressure Diameter Loop
title_short Elasticity assessment of electrospun nanofibrous vascular grafts: a comparison with femoral ovine arteries
title_full Elasticity assessment of electrospun nanofibrous vascular grafts: a comparison with femoral ovine arteries
title_fullStr Elasticity assessment of electrospun nanofibrous vascular grafts: a comparison with femoral ovine arteries
title_full_unstemmed Elasticity assessment of electrospun nanofibrous vascular grafts: a comparison with femoral ovine arteries
title_sort Elasticity assessment of electrospun nanofibrous vascular grafts: a comparison with femoral ovine arteries
dc.creator.none.fl_str_mv Suarez Bagnasco, D.
Montini Ballarin, Florencia
Cymberknop, Leandro Javier
Balay, G.
Negreira, C.
Abraham, Gustavo Abel
Armentano, Ricardo Luis
author Suarez Bagnasco, D.
author_facet Suarez Bagnasco, D.
Montini Ballarin, Florencia
Cymberknop, Leandro Javier
Balay, G.
Negreira, C.
Abraham, Gustavo Abel
Armentano, Ricardo Luis
author_role author
author2 Montini Ballarin, Florencia
Cymberknop, Leandro Javier
Balay, G.
Negreira, C.
Abraham, Gustavo Abel
Armentano, Ricardo Luis
author2_role author
author
author
author
author
author
dc.subject.none.fl_str_mv Vascular Grafts
Electrospinning
Plla
Mechanical Properties
Pressure Diameter Loop
topic Vascular Grafts
Electrospinning
Plla
Mechanical Properties
Pressure Diameter Loop
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.2
https://purl.org/becyt/ford/2
https://purl.org/becyt/ford/2.5
https://purl.org/becyt/ford/2
https://purl.org/becyt/ford/2.9
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv Development of successful small-diameter vascular grafts constitutes a real challenge to biomaterial engineering. In most cases these grafts fail in-vivo due to the presence of a mechanical mismatch between the native vessel and the vascular graft. Biomechanical characterization of real native vessels provides significant information for synthetic grafts development. Electrospun nanofibrous vascular grafts emerge as a potential tailor made solution to this problem. PLLA-electrospun nanofibrous tubular structures were prepared and selected as model bioresorbable grafts. An experimental setup, using gold standard and high resolution ultrasound techniques, was adapted to characterize in vitro the Poly(L-lactic acid) (PLLA) electrospun structures. The grafts were subjected to near physiologic pulsated pressure conditions, following the pressure-diameter loop approach and the criteria stated in the international standard for cardiovascular implants-tubular vascular prostheses. Additionally, ovine femoral arteries were subjected to a similar evaluation. Measurements of pressure and diameter variations allowed the estimation of dynamical compliance (C%, 10-2 mmHg) and the pressure-strain elastic modulus (EPe, 106 dyn cm-2) of the abovementioned vessels (grafts and arteries). Nanofibrous PLLA showed a decrease in %C (1.38 ± 0.21, 0.93 ± 0.13 and 0.76 ± 0.15) concomitant to an increase in EPe (10.57 ± 0.97, 14.31 ± 1.47 and 17.63 ± 2.61) corresponding to pressure ranges of 50 to 90 mmHg, 80 to 120 mmHg and 100 to 150 mmHg, respectively. Furthermore, femoral arteries exhibited a decrease in %C (8.52 ± 1.15 and 0.79 ± 0.20) and an increase in EPe (1.66 ± 0.30 and 15.76 ± 4.78) corresponding to pressure ranges of 50-90 mmHg (elastin zone) and 100-130 mmHg (collagen zone). Arterial mechanics framework, extensively applied in our previous works, was successfully used to characterize PLLA vascular grafts in vitro, although its application can be directly extended to in vivo experiences, in conscious and chronically instrumented animals. The specific design and construction of the electrospun nanofibrous PLLA vascular grafts assessed in this work, showed similar mechanical properties as the ones observed in femoral arteries, at the collagen pressure range.
Fil: Suarez Bagnasco, D.. Universidad de la República. Facultad de Ciencias; Uruguay
Fil: Montini Ballarin, Florencia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; Argentina
Fil: Cymberknop, Leandro Javier. Universidad Tecnológica Nacional. Facultad Regional Buenos Aires; Argentina
Fil: Balay, G.. Universidad de la República. Facultad de Ciencias; Uruguay
Fil: Negreira, C.. Universidad de la República. Facultad de Ciencias; Uruguay
Fil: Abraham, Gustavo Abel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; Argentina
Fil: Armentano, Ricardo Luis. Universidad Tecnológica Nacional; Argentina. Universidad de la República; Uruguay. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
description Development of successful small-diameter vascular grafts constitutes a real challenge to biomaterial engineering. In most cases these grafts fail in-vivo due to the presence of a mechanical mismatch between the native vessel and the vascular graft. Biomechanical characterization of real native vessels provides significant information for synthetic grafts development. Electrospun nanofibrous vascular grafts emerge as a potential tailor made solution to this problem. PLLA-electrospun nanofibrous tubular structures were prepared and selected as model bioresorbable grafts. An experimental setup, using gold standard and high resolution ultrasound techniques, was adapted to characterize in vitro the Poly(L-lactic acid) (PLLA) electrospun structures. The grafts were subjected to near physiologic pulsated pressure conditions, following the pressure-diameter loop approach and the criteria stated in the international standard for cardiovascular implants-tubular vascular prostheses. Additionally, ovine femoral arteries were subjected to a similar evaluation. Measurements of pressure and diameter variations allowed the estimation of dynamical compliance (C%, 10-2 mmHg) and the pressure-strain elastic modulus (EPe, 106 dyn cm-2) of the abovementioned vessels (grafts and arteries). Nanofibrous PLLA showed a decrease in %C (1.38 ± 0.21, 0.93 ± 0.13 and 0.76 ± 0.15) concomitant to an increase in EPe (10.57 ± 0.97, 14.31 ± 1.47 and 17.63 ± 2.61) corresponding to pressure ranges of 50 to 90 mmHg, 80 to 120 mmHg and 100 to 150 mmHg, respectively. Furthermore, femoral arteries exhibited a decrease in %C (8.52 ± 1.15 and 0.79 ± 0.20) and an increase in EPe (1.66 ± 0.30 and 15.76 ± 4.78) corresponding to pressure ranges of 50-90 mmHg (elastin zone) and 100-130 mmHg (collagen zone). Arterial mechanics framework, extensively applied in our previous works, was successfully used to characterize PLLA vascular grafts in vitro, although its application can be directly extended to in vivo experiences, in conscious and chronically instrumented animals. The specific design and construction of the electrospun nanofibrous PLLA vascular grafts assessed in this work, showed similar mechanical properties as the ones observed in femoral arteries, at the collagen pressure range.
publishDate 2014
dc.date.none.fl_str_mv 2014-12-16
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/29530
Suarez Bagnasco, D.; Montini Ballarin, Florencia; Cymberknop, Leandro Javier; Balay, G.; Negreira, C.; et al.; Elasticity assessment of electrospun nanofibrous vascular grafts: a comparison with femoral ovine arteries; Elsevier; Materials Science and Engineering: C; 45; 16-12-2014; 446-454
0928-4931
CONICET Digital
CONICET
url http://hdl.handle.net/11336/29530
identifier_str_mv Suarez Bagnasco, D.; Montini Ballarin, Florencia; Cymberknop, Leandro Javier; Balay, G.; Negreira, C.; et al.; Elasticity assessment of electrospun nanofibrous vascular grafts: a comparison with femoral ovine arteries; Elsevier; Materials Science and Engineering: C; 45; 16-12-2014; 446-454
0928-4931
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0928493114005864
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.msec.2014.09.016
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier
publisher.none.fl_str_mv Elsevier
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613380694867968
score 13.070432