Elasticity assessment of electrospun nanofibrous vascular grafts: a comparison with femoral ovine arteries
- Autores
- Suarez Bagnasco, D.; Montini Ballarin, Florencia; Cymberknop, Leandro Javier; Balay, G.; Negreira, C.; Abraham, Gustavo Abel; Armentano, Ricardo Luis
- Año de publicación
- 2014
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Development of successful small-diameter vascular grafts constitutes a real challenge to biomaterial engineering. In most cases these grafts fail in-vivo due to the presence of a mechanical mismatch between the native vessel and the vascular graft. Biomechanical characterization of real native vessels provides significant information for synthetic grafts development. Electrospun nanofibrous vascular grafts emerge as a potential tailor made solution to this problem. PLLA-electrospun nanofibrous tubular structures were prepared and selected as model bioresorbable grafts. An experimental setup, using gold standard and high resolution ultrasound techniques, was adapted to characterize in vitro the Poly(L-lactic acid) (PLLA) electrospun structures. The grafts were subjected to near physiologic pulsated pressure conditions, following the pressure-diameter loop approach and the criteria stated in the international standard for cardiovascular implants-tubular vascular prostheses. Additionally, ovine femoral arteries were subjected to a similar evaluation. Measurements of pressure and diameter variations allowed the estimation of dynamical compliance (C%, 10-2 mmHg) and the pressure-strain elastic modulus (EPe, 106 dyn cm-2) of the abovementioned vessels (grafts and arteries). Nanofibrous PLLA showed a decrease in %C (1.38 ± 0.21, 0.93 ± 0.13 and 0.76 ± 0.15) concomitant to an increase in EPe (10.57 ± 0.97, 14.31 ± 1.47 and 17.63 ± 2.61) corresponding to pressure ranges of 50 to 90 mmHg, 80 to 120 mmHg and 100 to 150 mmHg, respectively. Furthermore, femoral arteries exhibited a decrease in %C (8.52 ± 1.15 and 0.79 ± 0.20) and an increase in EPe (1.66 ± 0.30 and 15.76 ± 4.78) corresponding to pressure ranges of 50-90 mmHg (elastin zone) and 100-130 mmHg (collagen zone). Arterial mechanics framework, extensively applied in our previous works, was successfully used to characterize PLLA vascular grafts in vitro, although its application can be directly extended to in vivo experiences, in conscious and chronically instrumented animals. The specific design and construction of the electrospun nanofibrous PLLA vascular grafts assessed in this work, showed similar mechanical properties as the ones observed in femoral arteries, at the collagen pressure range.
Fil: Suarez Bagnasco, D.. Universidad de la República. Facultad de Ciencias; Uruguay
Fil: Montini Ballarin, Florencia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; Argentina
Fil: Cymberknop, Leandro Javier. Universidad Tecnológica Nacional. Facultad Regional Buenos Aires; Argentina
Fil: Balay, G.. Universidad de la República. Facultad de Ciencias; Uruguay
Fil: Negreira, C.. Universidad de la República. Facultad de Ciencias; Uruguay
Fil: Abraham, Gustavo Abel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; Argentina
Fil: Armentano, Ricardo Luis. Universidad Tecnológica Nacional; Argentina. Universidad de la República; Uruguay. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina - Materia
-
Vascular Grafts
Electrospinning
Plla
Mechanical Properties
Pressure Diameter Loop - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/29530
Ver los metadatos del registro completo
id |
CONICETDig_15a0cfd7cd24925bc91e2a105ebf28f6 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/29530 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Elasticity assessment of electrospun nanofibrous vascular grafts: a comparison with femoral ovine arteriesSuarez Bagnasco, D.Montini Ballarin, FlorenciaCymberknop, Leandro JavierBalay, G.Negreira, C.Abraham, Gustavo AbelArmentano, Ricardo LuisVascular GraftsElectrospinningPllaMechanical PropertiesPressure Diameter Loophttps://purl.org/becyt/ford/2.2https://purl.org/becyt/ford/2https://purl.org/becyt/ford/2.5https://purl.org/becyt/ford/2https://purl.org/becyt/ford/2.9https://purl.org/becyt/ford/2Development of successful small-diameter vascular grafts constitutes a real challenge to biomaterial engineering. In most cases these grafts fail in-vivo due to the presence of a mechanical mismatch between the native vessel and the vascular graft. Biomechanical characterization of real native vessels provides significant information for synthetic grafts development. Electrospun nanofibrous vascular grafts emerge as a potential tailor made solution to this problem. PLLA-electrospun nanofibrous tubular structures were prepared and selected as model bioresorbable grafts. An experimental setup, using gold standard and high resolution ultrasound techniques, was adapted to characterize in vitro the Poly(L-lactic acid) (PLLA) electrospun structures. The grafts were subjected to near physiologic pulsated pressure conditions, following the pressure-diameter loop approach and the criteria stated in the international standard for cardiovascular implants-tubular vascular prostheses. Additionally, ovine femoral arteries were subjected to a similar evaluation. Measurements of pressure and diameter variations allowed the estimation of dynamical compliance (C%, 10-2 mmHg) and the pressure-strain elastic modulus (EPe, 106 dyn cm-2) of the abovementioned vessels (grafts and arteries). Nanofibrous PLLA showed a decrease in %C (1.38 ± 0.21, 0.93 ± 0.13 and 0.76 ± 0.15) concomitant to an increase in EPe (10.57 ± 0.97, 14.31 ± 1.47 and 17.63 ± 2.61) corresponding to pressure ranges of 50 to 90 mmHg, 80 to 120 mmHg and 100 to 150 mmHg, respectively. Furthermore, femoral arteries exhibited a decrease in %C (8.52 ± 1.15 and 0.79 ± 0.20) and an increase in EPe (1.66 ± 0.30 and 15.76 ± 4.78) corresponding to pressure ranges of 50-90 mmHg (elastin zone) and 100-130 mmHg (collagen zone). Arterial mechanics framework, extensively applied in our previous works, was successfully used to characterize PLLA vascular grafts in vitro, although its application can be directly extended to in vivo experiences, in conscious and chronically instrumented animals. The specific design and construction of the electrospun nanofibrous PLLA vascular grafts assessed in this work, showed similar mechanical properties as the ones observed in femoral arteries, at the collagen pressure range.Fil: Suarez Bagnasco, D.. Universidad de la República. Facultad de Ciencias; UruguayFil: Montini Ballarin, Florencia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; ArgentinaFil: Cymberknop, Leandro Javier. Universidad Tecnológica Nacional. Facultad Regional Buenos Aires; ArgentinaFil: Balay, G.. Universidad de la República. Facultad de Ciencias; UruguayFil: Negreira, C.. Universidad de la República. Facultad de Ciencias; UruguayFil: Abraham, Gustavo Abel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; ArgentinaFil: Armentano, Ricardo Luis. Universidad Tecnológica Nacional; Argentina. Universidad de la República; Uruguay. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaElsevier2014-12-16info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/29530Suarez Bagnasco, D.; Montini Ballarin, Florencia; Cymberknop, Leandro Javier; Balay, G.; Negreira, C.; et al.; Elasticity assessment of electrospun nanofibrous vascular grafts: a comparison with femoral ovine arteries; Elsevier; Materials Science and Engineering: C; 45; 16-12-2014; 446-4540928-4931CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0928493114005864info:eu-repo/semantics/altIdentifier/doi/10.1016/j.msec.2014.09.016info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:43:51Zoai:ri.conicet.gov.ar:11336/29530instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:43:51.821CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Elasticity assessment of electrospun nanofibrous vascular grafts: a comparison with femoral ovine arteries |
title |
Elasticity assessment of electrospun nanofibrous vascular grafts: a comparison with femoral ovine arteries |
spellingShingle |
Elasticity assessment of electrospun nanofibrous vascular grafts: a comparison with femoral ovine arteries Suarez Bagnasco, D. Vascular Grafts Electrospinning Plla Mechanical Properties Pressure Diameter Loop |
title_short |
Elasticity assessment of electrospun nanofibrous vascular grafts: a comparison with femoral ovine arteries |
title_full |
Elasticity assessment of electrospun nanofibrous vascular grafts: a comparison with femoral ovine arteries |
title_fullStr |
Elasticity assessment of electrospun nanofibrous vascular grafts: a comparison with femoral ovine arteries |
title_full_unstemmed |
Elasticity assessment of electrospun nanofibrous vascular grafts: a comparison with femoral ovine arteries |
title_sort |
Elasticity assessment of electrospun nanofibrous vascular grafts: a comparison with femoral ovine arteries |
dc.creator.none.fl_str_mv |
Suarez Bagnasco, D. Montini Ballarin, Florencia Cymberknop, Leandro Javier Balay, G. Negreira, C. Abraham, Gustavo Abel Armentano, Ricardo Luis |
author |
Suarez Bagnasco, D. |
author_facet |
Suarez Bagnasco, D. Montini Ballarin, Florencia Cymberknop, Leandro Javier Balay, G. Negreira, C. Abraham, Gustavo Abel Armentano, Ricardo Luis |
author_role |
author |
author2 |
Montini Ballarin, Florencia Cymberknop, Leandro Javier Balay, G. Negreira, C. Abraham, Gustavo Abel Armentano, Ricardo Luis |
author2_role |
author author author author author author |
dc.subject.none.fl_str_mv |
Vascular Grafts Electrospinning Plla Mechanical Properties Pressure Diameter Loop |
topic |
Vascular Grafts Electrospinning Plla Mechanical Properties Pressure Diameter Loop |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.2 https://purl.org/becyt/ford/2 https://purl.org/becyt/ford/2.5 https://purl.org/becyt/ford/2 https://purl.org/becyt/ford/2.9 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
Development of successful small-diameter vascular grafts constitutes a real challenge to biomaterial engineering. In most cases these grafts fail in-vivo due to the presence of a mechanical mismatch between the native vessel and the vascular graft. Biomechanical characterization of real native vessels provides significant information for synthetic grafts development. Electrospun nanofibrous vascular grafts emerge as a potential tailor made solution to this problem. PLLA-electrospun nanofibrous tubular structures were prepared and selected as model bioresorbable grafts. An experimental setup, using gold standard and high resolution ultrasound techniques, was adapted to characterize in vitro the Poly(L-lactic acid) (PLLA) electrospun structures. The grafts were subjected to near physiologic pulsated pressure conditions, following the pressure-diameter loop approach and the criteria stated in the international standard for cardiovascular implants-tubular vascular prostheses. Additionally, ovine femoral arteries were subjected to a similar evaluation. Measurements of pressure and diameter variations allowed the estimation of dynamical compliance (C%, 10-2 mmHg) and the pressure-strain elastic modulus (EPe, 106 dyn cm-2) of the abovementioned vessels (grafts and arteries). Nanofibrous PLLA showed a decrease in %C (1.38 ± 0.21, 0.93 ± 0.13 and 0.76 ± 0.15) concomitant to an increase in EPe (10.57 ± 0.97, 14.31 ± 1.47 and 17.63 ± 2.61) corresponding to pressure ranges of 50 to 90 mmHg, 80 to 120 mmHg and 100 to 150 mmHg, respectively. Furthermore, femoral arteries exhibited a decrease in %C (8.52 ± 1.15 and 0.79 ± 0.20) and an increase in EPe (1.66 ± 0.30 and 15.76 ± 4.78) corresponding to pressure ranges of 50-90 mmHg (elastin zone) and 100-130 mmHg (collagen zone). Arterial mechanics framework, extensively applied in our previous works, was successfully used to characterize PLLA vascular grafts in vitro, although its application can be directly extended to in vivo experiences, in conscious and chronically instrumented animals. The specific design and construction of the electrospun nanofibrous PLLA vascular grafts assessed in this work, showed similar mechanical properties as the ones observed in femoral arteries, at the collagen pressure range. Fil: Suarez Bagnasco, D.. Universidad de la República. Facultad de Ciencias; Uruguay Fil: Montini Ballarin, Florencia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; Argentina Fil: Cymberknop, Leandro Javier. Universidad Tecnológica Nacional. Facultad Regional Buenos Aires; Argentina Fil: Balay, G.. Universidad de la República. Facultad de Ciencias; Uruguay Fil: Negreira, C.. Universidad de la República. Facultad de Ciencias; Uruguay Fil: Abraham, Gustavo Abel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; Argentina Fil: Armentano, Ricardo Luis. Universidad Tecnológica Nacional; Argentina. Universidad de la República; Uruguay. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina |
description |
Development of successful small-diameter vascular grafts constitutes a real challenge to biomaterial engineering. In most cases these grafts fail in-vivo due to the presence of a mechanical mismatch between the native vessel and the vascular graft. Biomechanical characterization of real native vessels provides significant information for synthetic grafts development. Electrospun nanofibrous vascular grafts emerge as a potential tailor made solution to this problem. PLLA-electrospun nanofibrous tubular structures were prepared and selected as model bioresorbable grafts. An experimental setup, using gold standard and high resolution ultrasound techniques, was adapted to characterize in vitro the Poly(L-lactic acid) (PLLA) electrospun structures. The grafts were subjected to near physiologic pulsated pressure conditions, following the pressure-diameter loop approach and the criteria stated in the international standard for cardiovascular implants-tubular vascular prostheses. Additionally, ovine femoral arteries were subjected to a similar evaluation. Measurements of pressure and diameter variations allowed the estimation of dynamical compliance (C%, 10-2 mmHg) and the pressure-strain elastic modulus (EPe, 106 dyn cm-2) of the abovementioned vessels (grafts and arteries). Nanofibrous PLLA showed a decrease in %C (1.38 ± 0.21, 0.93 ± 0.13 and 0.76 ± 0.15) concomitant to an increase in EPe (10.57 ± 0.97, 14.31 ± 1.47 and 17.63 ± 2.61) corresponding to pressure ranges of 50 to 90 mmHg, 80 to 120 mmHg and 100 to 150 mmHg, respectively. Furthermore, femoral arteries exhibited a decrease in %C (8.52 ± 1.15 and 0.79 ± 0.20) and an increase in EPe (1.66 ± 0.30 and 15.76 ± 4.78) corresponding to pressure ranges of 50-90 mmHg (elastin zone) and 100-130 mmHg (collagen zone). Arterial mechanics framework, extensively applied in our previous works, was successfully used to characterize PLLA vascular grafts in vitro, although its application can be directly extended to in vivo experiences, in conscious and chronically instrumented animals. The specific design and construction of the electrospun nanofibrous PLLA vascular grafts assessed in this work, showed similar mechanical properties as the ones observed in femoral arteries, at the collagen pressure range. |
publishDate |
2014 |
dc.date.none.fl_str_mv |
2014-12-16 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/29530 Suarez Bagnasco, D.; Montini Ballarin, Florencia; Cymberknop, Leandro Javier; Balay, G.; Negreira, C.; et al.; Elasticity assessment of electrospun nanofibrous vascular grafts: a comparison with femoral ovine arteries; Elsevier; Materials Science and Engineering: C; 45; 16-12-2014; 446-454 0928-4931 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/29530 |
identifier_str_mv |
Suarez Bagnasco, D.; Montini Ballarin, Florencia; Cymberknop, Leandro Javier; Balay, G.; Negreira, C.; et al.; Elasticity assessment of electrospun nanofibrous vascular grafts: a comparison with femoral ovine arteries; Elsevier; Materials Science and Engineering: C; 45; 16-12-2014; 446-454 0928-4931 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0928493114005864 info:eu-repo/semantics/altIdentifier/doi/10.1016/j.msec.2014.09.016 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613380694867968 |
score |
13.070432 |