Reduced kinematic multiscale model for tissue engineering electrospun scaffolds
- Autores
- Caballero, Daniel Enrique; Montini Ballarin, Florencia; Gimenez, Juan Manuel; Biocca, Nicolás; Rull, Nahuel; Frontini, Patricia Maria; Urquiza, Santiago Adrian
- Año de publicación
- 2022
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- To this day, there is still a need for a direct relationship between the microscopic material properties and network microstructure configuration with the macroscopic mechanical response in order to optimize the design loops of biomimetic electrospun grafts. Multiscale mechanical modeling arises as a useful alternative, which allows to represent the individual nanofibers mechanical response and how the interaction between fibers results in the final macroscopic behavior. In this work, a micromechanical model that accounts for fiber interaction, progressive straightening (i.e. progressive recruitment) and reorientation is presented. An RVE is generated by means of a virtual deposition algorithm that mimics the electrospinning process itself, thus obtaining geometries that resemble the observed electrospun microstructure. These geometries were then validated by comparison with analysis of SEM images, taking special interest in the diameter, orientation and tortuosity distributions. Then, an elastic–plastic constitutive law for the nanofibers is implemented along with a simplified kinematic description that results in a significant reduction of the number of Degrees of Freedom of the discretized mechanical equilibrium problem. Finally, the micromechanical model is validated against uniaxial tensile tests of electrospun PLLA bone-shaped samples, reproducing the experimentally observed behavior while employing realistic geometric and constitutive parameters to characterize the fibers.
Fil: Caballero, Daniel Enrique. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Departamento de Mecanica. Grupo de Ingeniería Asistida Por Computador; Argentina
Fil: Montini Ballarin, Florencia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata; Argentina. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Departamento de Mecanica. Grupo de Ingeniería Asistida Por Computador; Argentina
Fil: Gimenez, Juan Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata; Argentina. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Departamento de Mecanica. Grupo de Ingeniería Asistida Por Computador; Argentina
Fil: Biocca, Nicolás. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata; Argentina. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Departamento de Mecanica. Grupo de Ingeniería Asistida Por Computador; Argentina
Fil: Rull, Nahuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; Argentina
Fil: Frontini, Patricia Maria. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; Argentina
Fil: Urquiza, Santiago Adrian. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Departamento de Mecanica. Grupo de Ingeniería Asistida Por Computador; Argentina - Materia
-
ELECTROSPINNING
MECHANICAL BEHAVIOR
MICROSTRUCTURE
MULTISCALE MODELING
SCAFFOLDS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/216412
Ver los metadatos del registro completo
id |
CONICETDig_f4a27de4c588ff59b34a1abd2e7bbdc5 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/216412 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Reduced kinematic multiscale model for tissue engineering electrospun scaffoldsCaballero, Daniel EnriqueMontini Ballarin, FlorenciaGimenez, Juan ManuelBiocca, NicolásRull, NahuelFrontini, Patricia MariaUrquiza, Santiago AdrianELECTROSPINNINGMECHANICAL BEHAVIORMICROSTRUCTUREMULTISCALE MODELINGSCAFFOLDShttps://purl.org/becyt/ford/2.5https://purl.org/becyt/ford/2To this day, there is still a need for a direct relationship between the microscopic material properties and network microstructure configuration with the macroscopic mechanical response in order to optimize the design loops of biomimetic electrospun grafts. Multiscale mechanical modeling arises as a useful alternative, which allows to represent the individual nanofibers mechanical response and how the interaction between fibers results in the final macroscopic behavior. In this work, a micromechanical model that accounts for fiber interaction, progressive straightening (i.e. progressive recruitment) and reorientation is presented. An RVE is generated by means of a virtual deposition algorithm that mimics the electrospinning process itself, thus obtaining geometries that resemble the observed electrospun microstructure. These geometries were then validated by comparison with analysis of SEM images, taking special interest in the diameter, orientation and tortuosity distributions. Then, an elastic–plastic constitutive law for the nanofibers is implemented along with a simplified kinematic description that results in a significant reduction of the number of Degrees of Freedom of the discretized mechanical equilibrium problem. Finally, the micromechanical model is validated against uniaxial tensile tests of electrospun PLLA bone-shaped samples, reproducing the experimentally observed behavior while employing realistic geometric and constitutive parameters to characterize the fibers.Fil: Caballero, Daniel Enrique. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Departamento de Mecanica. Grupo de Ingeniería Asistida Por Computador; ArgentinaFil: Montini Ballarin, Florencia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata; Argentina. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Departamento de Mecanica. Grupo de Ingeniería Asistida Por Computador; ArgentinaFil: Gimenez, Juan Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata; Argentina. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Departamento de Mecanica. Grupo de Ingeniería Asistida Por Computador; ArgentinaFil: Biocca, Nicolás. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata; Argentina. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Departamento de Mecanica. Grupo de Ingeniería Asistida Por Computador; ArgentinaFil: Rull, Nahuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; ArgentinaFil: Frontini, Patricia Maria. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; ArgentinaFil: Urquiza, Santiago Adrian. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Departamento de Mecanica. Grupo de Ingeniería Asistida Por Computador; ArgentinaElsevier Science2022-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/216412Caballero, Daniel Enrique; Montini Ballarin, Florencia; Gimenez, Juan Manuel; Biocca, Nicolás; Rull, Nahuel; et al.; Reduced kinematic multiscale model for tissue engineering electrospun scaffolds; Elsevier Science; Mechanics of Materials; 166; 3-2022; 1-360167-6636CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0167663622000047info:eu-repo/semantics/altIdentifier/doi/10.1016/j.mechmat.2022.104214info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:02:31Zoai:ri.conicet.gov.ar:11336/216412instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:02:31.731CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Reduced kinematic multiscale model for tissue engineering electrospun scaffolds |
title |
Reduced kinematic multiscale model for tissue engineering electrospun scaffolds |
spellingShingle |
Reduced kinematic multiscale model for tissue engineering electrospun scaffolds Caballero, Daniel Enrique ELECTROSPINNING MECHANICAL BEHAVIOR MICROSTRUCTURE MULTISCALE MODELING SCAFFOLDS |
title_short |
Reduced kinematic multiscale model for tissue engineering electrospun scaffolds |
title_full |
Reduced kinematic multiscale model for tissue engineering electrospun scaffolds |
title_fullStr |
Reduced kinematic multiscale model for tissue engineering electrospun scaffolds |
title_full_unstemmed |
Reduced kinematic multiscale model for tissue engineering electrospun scaffolds |
title_sort |
Reduced kinematic multiscale model for tissue engineering electrospun scaffolds |
dc.creator.none.fl_str_mv |
Caballero, Daniel Enrique Montini Ballarin, Florencia Gimenez, Juan Manuel Biocca, Nicolás Rull, Nahuel Frontini, Patricia Maria Urquiza, Santiago Adrian |
author |
Caballero, Daniel Enrique |
author_facet |
Caballero, Daniel Enrique Montini Ballarin, Florencia Gimenez, Juan Manuel Biocca, Nicolás Rull, Nahuel Frontini, Patricia Maria Urquiza, Santiago Adrian |
author_role |
author |
author2 |
Montini Ballarin, Florencia Gimenez, Juan Manuel Biocca, Nicolás Rull, Nahuel Frontini, Patricia Maria Urquiza, Santiago Adrian |
author2_role |
author author author author author author |
dc.subject.none.fl_str_mv |
ELECTROSPINNING MECHANICAL BEHAVIOR MICROSTRUCTURE MULTISCALE MODELING SCAFFOLDS |
topic |
ELECTROSPINNING MECHANICAL BEHAVIOR MICROSTRUCTURE MULTISCALE MODELING SCAFFOLDS |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.5 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
To this day, there is still a need for a direct relationship between the microscopic material properties and network microstructure configuration with the macroscopic mechanical response in order to optimize the design loops of biomimetic electrospun grafts. Multiscale mechanical modeling arises as a useful alternative, which allows to represent the individual nanofibers mechanical response and how the interaction between fibers results in the final macroscopic behavior. In this work, a micromechanical model that accounts for fiber interaction, progressive straightening (i.e. progressive recruitment) and reorientation is presented. An RVE is generated by means of a virtual deposition algorithm that mimics the electrospinning process itself, thus obtaining geometries that resemble the observed electrospun microstructure. These geometries were then validated by comparison with analysis of SEM images, taking special interest in the diameter, orientation and tortuosity distributions. Then, an elastic–plastic constitutive law for the nanofibers is implemented along with a simplified kinematic description that results in a significant reduction of the number of Degrees of Freedom of the discretized mechanical equilibrium problem. Finally, the micromechanical model is validated against uniaxial tensile tests of electrospun PLLA bone-shaped samples, reproducing the experimentally observed behavior while employing realistic geometric and constitutive parameters to characterize the fibers. Fil: Caballero, Daniel Enrique. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Departamento de Mecanica. Grupo de Ingeniería Asistida Por Computador; Argentina Fil: Montini Ballarin, Florencia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata; Argentina. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Departamento de Mecanica. Grupo de Ingeniería Asistida Por Computador; Argentina Fil: Gimenez, Juan Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata; Argentina. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Departamento de Mecanica. Grupo de Ingeniería Asistida Por Computador; Argentina Fil: Biocca, Nicolás. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata; Argentina. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Departamento de Mecanica. Grupo de Ingeniería Asistida Por Computador; Argentina Fil: Rull, Nahuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; Argentina Fil: Frontini, Patricia Maria. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; Argentina Fil: Urquiza, Santiago Adrian. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Departamento de Mecanica. Grupo de Ingeniería Asistida Por Computador; Argentina |
description |
To this day, there is still a need for a direct relationship between the microscopic material properties and network microstructure configuration with the macroscopic mechanical response in order to optimize the design loops of biomimetic electrospun grafts. Multiscale mechanical modeling arises as a useful alternative, which allows to represent the individual nanofibers mechanical response and how the interaction between fibers results in the final macroscopic behavior. In this work, a micromechanical model that accounts for fiber interaction, progressive straightening (i.e. progressive recruitment) and reorientation is presented. An RVE is generated by means of a virtual deposition algorithm that mimics the electrospinning process itself, thus obtaining geometries that resemble the observed electrospun microstructure. These geometries were then validated by comparison with analysis of SEM images, taking special interest in the diameter, orientation and tortuosity distributions. Then, an elastic–plastic constitutive law for the nanofibers is implemented along with a simplified kinematic description that results in a significant reduction of the number of Degrees of Freedom of the discretized mechanical equilibrium problem. Finally, the micromechanical model is validated against uniaxial tensile tests of electrospun PLLA bone-shaped samples, reproducing the experimentally observed behavior while employing realistic geometric and constitutive parameters to characterize the fibers. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-03 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/216412 Caballero, Daniel Enrique; Montini Ballarin, Florencia; Gimenez, Juan Manuel; Biocca, Nicolás; Rull, Nahuel; et al.; Reduced kinematic multiscale model for tissue engineering electrospun scaffolds; Elsevier Science; Mechanics of Materials; 166; 3-2022; 1-36 0167-6636 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/216412 |
identifier_str_mv |
Caballero, Daniel Enrique; Montini Ballarin, Florencia; Gimenez, Juan Manuel; Biocca, Nicolás; Rull, Nahuel; et al.; Reduced kinematic multiscale model for tissue engineering electrospun scaffolds; Elsevier Science; Mechanics of Materials; 166; 3-2022; 1-36 0167-6636 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0167663622000047 info:eu-repo/semantics/altIdentifier/doi/10.1016/j.mechmat.2022.104214 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier Science |
publisher.none.fl_str_mv |
Elsevier Science |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613830721667072 |
score |
13.070432 |