Nonlinear optimization for a tumor invasion PDE model
- Autores
- Quiroga, Andrés Agustin Ignacio; Torres, German Ariel; Fernández Ferreyra, Damián Roberto; Turner, Cristina Vilma
- Año de publicación
- 2016
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In this work, we introduce a methodology to approximate unknown parameters that appear on a non-linear reaction–diffusion model of tumor invasion. These equations consider that tumor-induced alteration of micro-environmental pH furnishes a mechanism for cancer invasion. A coupled system reaction–diffusion explaining this model is given by three partial differential equations for the non-dimensional spatial distribution and temporal evolution of the density of normal tissue, the neoplastic tissue growth and the excess concentration of H ++ ions. The tumor model parameters have a corresponding biological meaning: the reabsorption rate, the destructive influence of H ++ ions in the healthy tissue, the growth rate of tumor tissue and the diffusion coefficient. We propose to solve the direct problem using the Finite Element Method (FEM) and minimize an appropriate functional including both the real data (obtained via in-vitro experiments and fluorescence ratio imaging microscopy) and the numerical solution. The gradient of the functional is computed by the adjoint method.
Fil: Quiroga, Andrés Agustin Ignacio. Comision Nacional de Energia Atomica. Gerencia de Area de Aplicaciones de la Tecnología Nuclear. Gerencia de Investigación Aplicada. Grupo de Mecanica Computacional; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Torres, German Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Modelado e Innovación Tecnológica. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas Naturales y Agrimensura. Instituto de Modelado e Innovación Tecnológica; Argentina
Fil: Fernández Ferreyra, Damián Roberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina
Fil: Turner, Cristina Vilma. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina - Materia
-
REACTION DIFFUSION EQUATION
TUMOR INVASION
PDE-CONSTRAINED OPTIMIZATION
ADJOINT METHOD
FINITE ELEMENT METHOD - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/31530
Ver los metadatos del registro completo
id |
CONICETDig_be918689efd5dc801695c2fc251d5eac |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/31530 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Nonlinear optimization for a tumor invasion PDE modelQuiroga, Andrés Agustin IgnacioTorres, German ArielFernández Ferreyra, Damián RobertoTurner, Cristina VilmaREACTION DIFFUSION EQUATIONTUMOR INVASIONPDE-CONSTRAINED OPTIMIZATIONADJOINT METHODFINITE ELEMENT METHODhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1In this work, we introduce a methodology to approximate unknown parameters that appear on a non-linear reaction–diffusion model of tumor invasion. These equations consider that tumor-induced alteration of micro-environmental pH furnishes a mechanism for cancer invasion. A coupled system reaction–diffusion explaining this model is given by three partial differential equations for the non-dimensional spatial distribution and temporal evolution of the density of normal tissue, the neoplastic tissue growth and the excess concentration of H ++ ions. The tumor model parameters have a corresponding biological meaning: the reabsorption rate, the destructive influence of H ++ ions in the healthy tissue, the growth rate of tumor tissue and the diffusion coefficient. We propose to solve the direct problem using the Finite Element Method (FEM) and minimize an appropriate functional including both the real data (obtained via in-vitro experiments and fluorescence ratio imaging microscopy) and the numerical solution. The gradient of the functional is computed by the adjoint method.Fil: Quiroga, Andrés Agustin Ignacio. Comision Nacional de Energia Atomica. Gerencia de Area de Aplicaciones de la Tecnología Nuclear. Gerencia de Investigación Aplicada. Grupo de Mecanica Computacional; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Torres, German Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Modelado e Innovación Tecnológica. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas Naturales y Agrimensura. Instituto de Modelado e Innovación Tecnológica; ArgentinaFil: Fernández Ferreyra, Damián Roberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; ArgentinaFil: Turner, Cristina Vilma. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; ArgentinaSpringer2016-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/31530Fernández Ferreyra, Damián Roberto; Torres, German Ariel; Quiroga, Andrés Agustin Ignacio; Turner, Cristina Vilma; Nonlinear optimization for a tumor invasion PDE model; Springer; Computational And Applied Mathematics; 6-2016; 1-150101-82051807-0302CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://link.springer.com/10.1007/s40314-016-0356-2info:eu-repo/semantics/altIdentifier/doi/10.1007/s40314-016-0356-2info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-17T11:14:05Zoai:ri.conicet.gov.ar:11336/31530instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-17 11:14:05.634CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Nonlinear optimization for a tumor invasion PDE model |
title |
Nonlinear optimization for a tumor invasion PDE model |
spellingShingle |
Nonlinear optimization for a tumor invasion PDE model Quiroga, Andrés Agustin Ignacio REACTION DIFFUSION EQUATION TUMOR INVASION PDE-CONSTRAINED OPTIMIZATION ADJOINT METHOD FINITE ELEMENT METHOD |
title_short |
Nonlinear optimization for a tumor invasion PDE model |
title_full |
Nonlinear optimization for a tumor invasion PDE model |
title_fullStr |
Nonlinear optimization for a tumor invasion PDE model |
title_full_unstemmed |
Nonlinear optimization for a tumor invasion PDE model |
title_sort |
Nonlinear optimization for a tumor invasion PDE model |
dc.creator.none.fl_str_mv |
Quiroga, Andrés Agustin Ignacio Torres, German Ariel Fernández Ferreyra, Damián Roberto Turner, Cristina Vilma |
author |
Quiroga, Andrés Agustin Ignacio |
author_facet |
Quiroga, Andrés Agustin Ignacio Torres, German Ariel Fernández Ferreyra, Damián Roberto Turner, Cristina Vilma |
author_role |
author |
author2 |
Torres, German Ariel Fernández Ferreyra, Damián Roberto Turner, Cristina Vilma |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
REACTION DIFFUSION EQUATION TUMOR INVASION PDE-CONSTRAINED OPTIMIZATION ADJOINT METHOD FINITE ELEMENT METHOD |
topic |
REACTION DIFFUSION EQUATION TUMOR INVASION PDE-CONSTRAINED OPTIMIZATION ADJOINT METHOD FINITE ELEMENT METHOD |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
In this work, we introduce a methodology to approximate unknown parameters that appear on a non-linear reaction–diffusion model of tumor invasion. These equations consider that tumor-induced alteration of micro-environmental pH furnishes a mechanism for cancer invasion. A coupled system reaction–diffusion explaining this model is given by three partial differential equations for the non-dimensional spatial distribution and temporal evolution of the density of normal tissue, the neoplastic tissue growth and the excess concentration of H ++ ions. The tumor model parameters have a corresponding biological meaning: the reabsorption rate, the destructive influence of H ++ ions in the healthy tissue, the growth rate of tumor tissue and the diffusion coefficient. We propose to solve the direct problem using the Finite Element Method (FEM) and minimize an appropriate functional including both the real data (obtained via in-vitro experiments and fluorescence ratio imaging microscopy) and the numerical solution. The gradient of the functional is computed by the adjoint method. Fil: Quiroga, Andrés Agustin Ignacio. Comision Nacional de Energia Atomica. Gerencia de Area de Aplicaciones de la Tecnología Nuclear. Gerencia de Investigación Aplicada. Grupo de Mecanica Computacional; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Torres, German Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Modelado e Innovación Tecnológica. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas Naturales y Agrimensura. Instituto de Modelado e Innovación Tecnológica; Argentina Fil: Fernández Ferreyra, Damián Roberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina Fil: Turner, Cristina Vilma. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina |
description |
In this work, we introduce a methodology to approximate unknown parameters that appear on a non-linear reaction–diffusion model of tumor invasion. These equations consider that tumor-induced alteration of micro-environmental pH furnishes a mechanism for cancer invasion. A coupled system reaction–diffusion explaining this model is given by three partial differential equations for the non-dimensional spatial distribution and temporal evolution of the density of normal tissue, the neoplastic tissue growth and the excess concentration of H ++ ions. The tumor model parameters have a corresponding biological meaning: the reabsorption rate, the destructive influence of H ++ ions in the healthy tissue, the growth rate of tumor tissue and the diffusion coefficient. We propose to solve the direct problem using the Finite Element Method (FEM) and minimize an appropriate functional including both the real data (obtained via in-vitro experiments and fluorescence ratio imaging microscopy) and the numerical solution. The gradient of the functional is computed by the adjoint method. |
publishDate |
2016 |
dc.date.none.fl_str_mv |
2016-06 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/31530 Fernández Ferreyra, Damián Roberto; Torres, German Ariel; Quiroga, Andrés Agustin Ignacio; Turner, Cristina Vilma; Nonlinear optimization for a tumor invasion PDE model; Springer; Computational And Applied Mathematics; 6-2016; 1-15 0101-8205 1807-0302 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/31530 |
identifier_str_mv |
Fernández Ferreyra, Damián Roberto; Torres, German Ariel; Quiroga, Andrés Agustin Ignacio; Turner, Cristina Vilma; Nonlinear optimization for a tumor invasion PDE model; Springer; Computational And Applied Mathematics; 6-2016; 1-15 0101-8205 1807-0302 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://link.springer.com/10.1007/s40314-016-0356-2 info:eu-repo/semantics/altIdentifier/doi/10.1007/s40314-016-0356-2 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Springer |
publisher.none.fl_str_mv |
Springer |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1843606476738789376 |
score |
13.001348 |