Time-delay identification using multiscale ordinal quantifiers
- Autores
- Soriano, Miguel C.; Zunino, Luciano José
- Año de publicación
- 2021
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Time-delayed interactions naturally appear in a multitude of real-world systems due to the finite propagation speed of physical quantities. Often, the time scales of the interactions are unknown to an external observer and need to be inferred from time series of observed data. We explore, in this work, the properties of several ordinal-based quantifiers for the identification of time-delays from time series. To that end, we generate artificial time series of stochastic and deterministic time-delay models. We find that the presence of a nonlinearity in the generating model has consequences for the distribution of ordinal patterns and, consequently, on the delay-identification qualities of the quantifiers. Here, we put forward a novel ordinal-based quantifier that is particularly sensitive to nonlinearities in the generating model and compare it with previously-defined quantifiers. We conclude from our analysis on artificially generated data that the proper identification of the presence of a time-delay and its precise value from time series benefits from the complementary use of ordinal-based quantifiers and the standard autocorrelation function. We further validate these tools with a practical example on real-world data originating from the North Atlantic Oscillation weather phenomenon.
Fil: Soriano, Miguel C.. Consejo Superior de Investigaciones Científicas. Instituto de Física Interdisciplinar y Sistemas Complejos; España
Fil: Zunino, Luciano José. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas; Argentina. Universidad Nacional de La Plata. Facultad de Ingeniería; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina - Materia
-
AUTOCORRELATION FUNCTION
LINEAR MODELS
NONLINEAR MODELS
ORDINAL PATTERNS
ORDINAL TEMPORAL ASYMMETRY
PERMUTATION ENTROPY
SYMBOLIC ANALYSIS
TIME SERIES
TIME-DELAY
WEIGHTED PERMUTATION ENTROPY - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/173643
Ver los metadatos del registro completo
id |
CONICETDig_46d528b513dd7faeb0b08821822baf77 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/173643 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Time-delay identification using multiscale ordinal quantifiersSoriano, Miguel C.Zunino, Luciano JoséAUTOCORRELATION FUNCTIONLINEAR MODELSNONLINEAR MODELSORDINAL PATTERNSORDINAL TEMPORAL ASYMMETRYPERMUTATION ENTROPYSYMBOLIC ANALYSISTIME SERIESTIME-DELAYWEIGHTED PERMUTATION ENTROPYhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1Time-delayed interactions naturally appear in a multitude of real-world systems due to the finite propagation speed of physical quantities. Often, the time scales of the interactions are unknown to an external observer and need to be inferred from time series of observed data. We explore, in this work, the properties of several ordinal-based quantifiers for the identification of time-delays from time series. To that end, we generate artificial time series of stochastic and deterministic time-delay models. We find that the presence of a nonlinearity in the generating model has consequences for the distribution of ordinal patterns and, consequently, on the delay-identification qualities of the quantifiers. Here, we put forward a novel ordinal-based quantifier that is particularly sensitive to nonlinearities in the generating model and compare it with previously-defined quantifiers. We conclude from our analysis on artificially generated data that the proper identification of the presence of a time-delay and its precise value from time series benefits from the complementary use of ordinal-based quantifiers and the standard autocorrelation function. We further validate these tools with a practical example on real-world data originating from the North Atlantic Oscillation weather phenomenon.Fil: Soriano, Miguel C.. Consejo Superior de Investigaciones Científicas. Instituto de Física Interdisciplinar y Sistemas Complejos; EspañaFil: Zunino, Luciano José. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas; Argentina. Universidad Nacional de La Plata. Facultad de Ingeniería; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; ArgentinaMolecular Diversity Preservation International2021-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/173643Soriano, Miguel C.; Zunino, Luciano José; Time-delay identification using multiscale ordinal quantifiers; Molecular Diversity Preservation International; Entropy; 23; 8; 8-2021; 1-151099-4300CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.3390/e23080969info:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/1099-4300/23/8/969info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:19:07Zoai:ri.conicet.gov.ar:11336/173643instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:19:07.335CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Time-delay identification using multiscale ordinal quantifiers |
title |
Time-delay identification using multiscale ordinal quantifiers |
spellingShingle |
Time-delay identification using multiscale ordinal quantifiers Soriano, Miguel C. AUTOCORRELATION FUNCTION LINEAR MODELS NONLINEAR MODELS ORDINAL PATTERNS ORDINAL TEMPORAL ASYMMETRY PERMUTATION ENTROPY SYMBOLIC ANALYSIS TIME SERIES TIME-DELAY WEIGHTED PERMUTATION ENTROPY |
title_short |
Time-delay identification using multiscale ordinal quantifiers |
title_full |
Time-delay identification using multiscale ordinal quantifiers |
title_fullStr |
Time-delay identification using multiscale ordinal quantifiers |
title_full_unstemmed |
Time-delay identification using multiscale ordinal quantifiers |
title_sort |
Time-delay identification using multiscale ordinal quantifiers |
dc.creator.none.fl_str_mv |
Soriano, Miguel C. Zunino, Luciano José |
author |
Soriano, Miguel C. |
author_facet |
Soriano, Miguel C. Zunino, Luciano José |
author_role |
author |
author2 |
Zunino, Luciano José |
author2_role |
author |
dc.subject.none.fl_str_mv |
AUTOCORRELATION FUNCTION LINEAR MODELS NONLINEAR MODELS ORDINAL PATTERNS ORDINAL TEMPORAL ASYMMETRY PERMUTATION ENTROPY SYMBOLIC ANALYSIS TIME SERIES TIME-DELAY WEIGHTED PERMUTATION ENTROPY |
topic |
AUTOCORRELATION FUNCTION LINEAR MODELS NONLINEAR MODELS ORDINAL PATTERNS ORDINAL TEMPORAL ASYMMETRY PERMUTATION ENTROPY SYMBOLIC ANALYSIS TIME SERIES TIME-DELAY WEIGHTED PERMUTATION ENTROPY |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Time-delayed interactions naturally appear in a multitude of real-world systems due to the finite propagation speed of physical quantities. Often, the time scales of the interactions are unknown to an external observer and need to be inferred from time series of observed data. We explore, in this work, the properties of several ordinal-based quantifiers for the identification of time-delays from time series. To that end, we generate artificial time series of stochastic and deterministic time-delay models. We find that the presence of a nonlinearity in the generating model has consequences for the distribution of ordinal patterns and, consequently, on the delay-identification qualities of the quantifiers. Here, we put forward a novel ordinal-based quantifier that is particularly sensitive to nonlinearities in the generating model and compare it with previously-defined quantifiers. We conclude from our analysis on artificially generated data that the proper identification of the presence of a time-delay and its precise value from time series benefits from the complementary use of ordinal-based quantifiers and the standard autocorrelation function. We further validate these tools with a practical example on real-world data originating from the North Atlantic Oscillation weather phenomenon. Fil: Soriano, Miguel C.. Consejo Superior de Investigaciones Científicas. Instituto de Física Interdisciplinar y Sistemas Complejos; España Fil: Zunino, Luciano José. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas; Argentina. Universidad Nacional de La Plata. Facultad de Ingeniería; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina |
description |
Time-delayed interactions naturally appear in a multitude of real-world systems due to the finite propagation speed of physical quantities. Often, the time scales of the interactions are unknown to an external observer and need to be inferred from time series of observed data. We explore, in this work, the properties of several ordinal-based quantifiers for the identification of time-delays from time series. To that end, we generate artificial time series of stochastic and deterministic time-delay models. We find that the presence of a nonlinearity in the generating model has consequences for the distribution of ordinal patterns and, consequently, on the delay-identification qualities of the quantifiers. Here, we put forward a novel ordinal-based quantifier that is particularly sensitive to nonlinearities in the generating model and compare it with previously-defined quantifiers. We conclude from our analysis on artificially generated data that the proper identification of the presence of a time-delay and its precise value from time series benefits from the complementary use of ordinal-based quantifiers and the standard autocorrelation function. We further validate these tools with a practical example on real-world data originating from the North Atlantic Oscillation weather phenomenon. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-08 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/173643 Soriano, Miguel C.; Zunino, Luciano José; Time-delay identification using multiscale ordinal quantifiers; Molecular Diversity Preservation International; Entropy; 23; 8; 8-2021; 1-15 1099-4300 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/173643 |
identifier_str_mv |
Soriano, Miguel C.; Zunino, Luciano José; Time-delay identification using multiscale ordinal quantifiers; Molecular Diversity Preservation International; Entropy; 23; 8; 8-2021; 1-15 1099-4300 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.3390/e23080969 info:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/1099-4300/23/8/969 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Molecular Diversity Preservation International |
publisher.none.fl_str_mv |
Molecular Diversity Preservation International |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842981040417669120 |
score |
12.48226 |