Time-delay identification using multiscale ordinal quantifiers

Autores
Soriano, Miguel C.; Zunino, Luciano José
Año de publicación
2021
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Time-delayed interactions naturally appear in a multitude of real-world systems due to the finite propagation speed of physical quantities. Often, the time scales of the interactions are unknown to an external observer and need to be inferred from time series of observed data. We explore, in this work, the properties of several ordinal-based quantifiers for the identification of time-delays from time series. To that end, we generate artificial time series of stochastic and deterministic time-delay models. We find that the presence of a nonlinearity in the generating model has consequences for the distribution of ordinal patterns and, consequently, on the delay-identification qualities of the quantifiers. Here, we put forward a novel ordinal-based quantifier that is particularly sensitive to nonlinearities in the generating model and compare it with previously-defined quantifiers. We conclude from our analysis on artificially generated data that the proper identification of the presence of a time-delay and its precise value from time series benefits from the complementary use of ordinal-based quantifiers and the standard autocorrelation function. We further validate these tools with a practical example on real-world data originating from the North Atlantic Oscillation weather phenomenon.
Fil: Soriano, Miguel C.. Consejo Superior de Investigaciones Científicas. Instituto de Física Interdisciplinar y Sistemas Complejos; España
Fil: Zunino, Luciano José. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas; Argentina. Universidad Nacional de La Plata. Facultad de Ingeniería; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina
Materia
AUTOCORRELATION FUNCTION
LINEAR MODELS
NONLINEAR MODELS
ORDINAL PATTERNS
ORDINAL TEMPORAL ASYMMETRY
PERMUTATION ENTROPY
SYMBOLIC ANALYSIS
TIME SERIES
TIME-DELAY
WEIGHTED PERMUTATION ENTROPY
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/173643

id CONICETDig_46d528b513dd7faeb0b08821822baf77
oai_identifier_str oai:ri.conicet.gov.ar:11336/173643
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Time-delay identification using multiscale ordinal quantifiersSoriano, Miguel C.Zunino, Luciano JoséAUTOCORRELATION FUNCTIONLINEAR MODELSNONLINEAR MODELSORDINAL PATTERNSORDINAL TEMPORAL ASYMMETRYPERMUTATION ENTROPYSYMBOLIC ANALYSISTIME SERIESTIME-DELAYWEIGHTED PERMUTATION ENTROPYhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1Time-delayed interactions naturally appear in a multitude of real-world systems due to the finite propagation speed of physical quantities. Often, the time scales of the interactions are unknown to an external observer and need to be inferred from time series of observed data. We explore, in this work, the properties of several ordinal-based quantifiers for the identification of time-delays from time series. To that end, we generate artificial time series of stochastic and deterministic time-delay models. We find that the presence of a nonlinearity in the generating model has consequences for the distribution of ordinal patterns and, consequently, on the delay-identification qualities of the quantifiers. Here, we put forward a novel ordinal-based quantifier that is particularly sensitive to nonlinearities in the generating model and compare it with previously-defined quantifiers. We conclude from our analysis on artificially generated data that the proper identification of the presence of a time-delay and its precise value from time series benefits from the complementary use of ordinal-based quantifiers and the standard autocorrelation function. We further validate these tools with a practical example on real-world data originating from the North Atlantic Oscillation weather phenomenon.Fil: Soriano, Miguel C.. Consejo Superior de Investigaciones Científicas. Instituto de Física Interdisciplinar y Sistemas Complejos; EspañaFil: Zunino, Luciano José. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas; Argentina. Universidad Nacional de La Plata. Facultad de Ingeniería; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; ArgentinaMolecular Diversity Preservation International2021-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/173643Soriano, Miguel C.; Zunino, Luciano José; Time-delay identification using multiscale ordinal quantifiers; Molecular Diversity Preservation International; Entropy; 23; 8; 8-2021; 1-151099-4300CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.3390/e23080969info:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/1099-4300/23/8/969info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:19:07Zoai:ri.conicet.gov.ar:11336/173643instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:19:07.335CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Time-delay identification using multiscale ordinal quantifiers
title Time-delay identification using multiscale ordinal quantifiers
spellingShingle Time-delay identification using multiscale ordinal quantifiers
Soriano, Miguel C.
AUTOCORRELATION FUNCTION
LINEAR MODELS
NONLINEAR MODELS
ORDINAL PATTERNS
ORDINAL TEMPORAL ASYMMETRY
PERMUTATION ENTROPY
SYMBOLIC ANALYSIS
TIME SERIES
TIME-DELAY
WEIGHTED PERMUTATION ENTROPY
title_short Time-delay identification using multiscale ordinal quantifiers
title_full Time-delay identification using multiscale ordinal quantifiers
title_fullStr Time-delay identification using multiscale ordinal quantifiers
title_full_unstemmed Time-delay identification using multiscale ordinal quantifiers
title_sort Time-delay identification using multiscale ordinal quantifiers
dc.creator.none.fl_str_mv Soriano, Miguel C.
Zunino, Luciano José
author Soriano, Miguel C.
author_facet Soriano, Miguel C.
Zunino, Luciano José
author_role author
author2 Zunino, Luciano José
author2_role author
dc.subject.none.fl_str_mv AUTOCORRELATION FUNCTION
LINEAR MODELS
NONLINEAR MODELS
ORDINAL PATTERNS
ORDINAL TEMPORAL ASYMMETRY
PERMUTATION ENTROPY
SYMBOLIC ANALYSIS
TIME SERIES
TIME-DELAY
WEIGHTED PERMUTATION ENTROPY
topic AUTOCORRELATION FUNCTION
LINEAR MODELS
NONLINEAR MODELS
ORDINAL PATTERNS
ORDINAL TEMPORAL ASYMMETRY
PERMUTATION ENTROPY
SYMBOLIC ANALYSIS
TIME SERIES
TIME-DELAY
WEIGHTED PERMUTATION ENTROPY
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Time-delayed interactions naturally appear in a multitude of real-world systems due to the finite propagation speed of physical quantities. Often, the time scales of the interactions are unknown to an external observer and need to be inferred from time series of observed data. We explore, in this work, the properties of several ordinal-based quantifiers for the identification of time-delays from time series. To that end, we generate artificial time series of stochastic and deterministic time-delay models. We find that the presence of a nonlinearity in the generating model has consequences for the distribution of ordinal patterns and, consequently, on the delay-identification qualities of the quantifiers. Here, we put forward a novel ordinal-based quantifier that is particularly sensitive to nonlinearities in the generating model and compare it with previously-defined quantifiers. We conclude from our analysis on artificially generated data that the proper identification of the presence of a time-delay and its precise value from time series benefits from the complementary use of ordinal-based quantifiers and the standard autocorrelation function. We further validate these tools with a practical example on real-world data originating from the North Atlantic Oscillation weather phenomenon.
Fil: Soriano, Miguel C.. Consejo Superior de Investigaciones Científicas. Instituto de Física Interdisciplinar y Sistemas Complejos; España
Fil: Zunino, Luciano José. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas; Argentina. Universidad Nacional de La Plata. Facultad de Ingeniería; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina
description Time-delayed interactions naturally appear in a multitude of real-world systems due to the finite propagation speed of physical quantities. Often, the time scales of the interactions are unknown to an external observer and need to be inferred from time series of observed data. We explore, in this work, the properties of several ordinal-based quantifiers for the identification of time-delays from time series. To that end, we generate artificial time series of stochastic and deterministic time-delay models. We find that the presence of a nonlinearity in the generating model has consequences for the distribution of ordinal patterns and, consequently, on the delay-identification qualities of the quantifiers. Here, we put forward a novel ordinal-based quantifier that is particularly sensitive to nonlinearities in the generating model and compare it with previously-defined quantifiers. We conclude from our analysis on artificially generated data that the proper identification of the presence of a time-delay and its precise value from time series benefits from the complementary use of ordinal-based quantifiers and the standard autocorrelation function. We further validate these tools with a practical example on real-world data originating from the North Atlantic Oscillation weather phenomenon.
publishDate 2021
dc.date.none.fl_str_mv 2021-08
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/173643
Soriano, Miguel C.; Zunino, Luciano José; Time-delay identification using multiscale ordinal quantifiers; Molecular Diversity Preservation International; Entropy; 23; 8; 8-2021; 1-15
1099-4300
CONICET Digital
CONICET
url http://hdl.handle.net/11336/173643
identifier_str_mv Soriano, Miguel C.; Zunino, Luciano José; Time-delay identification using multiscale ordinal quantifiers; Molecular Diversity Preservation International; Entropy; 23; 8; 8-2021; 1-15
1099-4300
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.3390/e23080969
info:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/1099-4300/23/8/969
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Molecular Diversity Preservation International
publisher.none.fl_str_mv Molecular Diversity Preservation International
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842981040417669120
score 12.48226