Assessing the Relevance of Non-molecular Prognostic Systems for Myelodysplastic Syndrome in the Era of Next-Generation Sequencing
- Autores
- Lincango Yupanki, Marco Vinicio; Andreoli, Verónica; Rivello, Hernán García; Bender, Andrea; Catalán, Ana I; Rahhal, Marilina; Delamer, Rocío; Asinari, Mariana; Mosquera Orgueira, Adrián; Castro, María Belén; Mela Osorio, María José; Navickas, Alicia; Grille, Sofia; Agriello, Evangelina Edith; Arbelbide, Jorge; Basquiera, Ana Lisa; Belli, Carolina Bárbara
- Año de publicación
- 2024
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Background: The Molecular International Prognostic Scoring System (IPSS-M) has improvedthe prediction of clinical outcomes for myelodysplastic syndromes (MDS). The ArtificialIntelligence Prognostic Scoring System for MDS (AIPSS-MDS), based on classical clinicalparameters, has outperformed the IPSS, revised version (IPSS-R). For the first time, wevalidated the IPSS-M and other molecular prognostic models and compared them with theestablished IPSS-R and AIPSS-MDS models using data from South American patients.Methods: Molecular and clinical data from 145 patients with MDS and 37 patients withMDS/myeloproliferative neoplasms were retrospectively analyzed.Results: Prognostic power evaluation revealed that the IPSS-M (Harrell’s concordance [C]-index: 0.75, area under the receiver operating characteristic curve [AUC]: 0.68) predictedoverall survival better than the European MDS (EuroMDS; C-index: 0.72, AUC: 0.68) andMunich Leukemia Laboratory (MLL) (C-index: 0.70, AUC: 0.64) models. The IPSS-M prognosticdiscrimination was similar to that of the AIPSS-MDS model (C-index: 0.74, AUC:0.66) and outperformed the IPSS-R model (C-index: 0.70, AUC: 0.61). Considering simplifiedlow- and high-risk groups for clinical management, after restratifying from IPSS-R (57%and 32%, respectively, hazard ratio [HR]: 2.8; P =0.002) to IPSS-M, 12.6% of patients wereupstaged, and 5% were downstaged (HR: 2.9; P =0.001). The AIPSS-MDS recategorized51% of the low-risk cohort as high-risk, with no patients being downstaged (HR: 5.6;P <0.001), consistent with most patients requiring disease-modifying therapy.Conclusions: The IPSS-M and AIPSS-MDS models provide more accurate survival prognosesthan the IPSS-R, EuroMDS, and MLL models. The AIPSS-MDS model is a valid optionfor assessing risks for all patients with MDS, especially in resource-limited centers wheremolecular testing is not currently a standard clinical practice.
Fil: Lincango Yupanki, Marco Vinicio. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Medicina Experimental. Academia Nacional de Medicina de Buenos Aires. Instituto de Medicina Experimental; Argentina
Fil: Andreoli, Verónica. Hospital Privado Universitario de Cordoba.; Argentina
Fil: Rivello, Hernán García. Instituto Universidad Escuela de Medicina del Hospital Italiano; Argentina
Fil: Bender, Andrea. Laboratorio de Especialidades Bioquimicas (leb Laboratorio);
Fil: Catalán, Ana I. Universidad de la República. Facultad de Medicina. Hospital de Clínicas "Dr. Manuel Quintela"; Uruguay
Fil: Rahhal, Marilina. Provincia de Buenos Aires. Ministerio de Salud. Hospital Alta Complejidad en Red El Cruce Dr. Néstor Carlos Kirchner Samic; Argentina
Fil: Delamer, Rocío. Fundación Para Combatir la Leucemia; Argentina
Fil: Asinari, Mariana. Hospital Privado Universitario de Cordoba.; Argentina
Fil: Mosquera Orgueira, Adrián. Universidad de Santiago de Compostela; España
Fil: Castro, María Belén. Hospital Privado Universitario de Cordoba.; Argentina
Fil: Mela Osorio, María José. Fundacion Para Combatir la Leucemia.; Argentina
Fil: Navickas, Alicia. Provincia de Buenos Aires. Ministerio de Salud. Hospital Alta Complejidad en Red El Cruce Dr. Néstor Carlos Kirchner Samic; Argentina
Fil: Grille, Sofia. Universidad de la República. Facultad de Medicina. Hospital de Clínicas "Dr. Manuel Quintela"; Uruguay
Fil: Agriello, Evangelina Edith. Laboratorio de Especialidades Bioquimicas (leb Laboratorio);
Fil: Arbelbide, Jorge. Hospital Italiano; Argentina
Fil: Basquiera, Ana Lisa. Hospital Privado Universitario de Cordoba.; Argentina
Fil: Belli, Carolina Bárbara. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Medicina Experimental. Academia Nacional de Medicina de Buenos Aires. Instituto de Medicina Experimental; Argentina - Materia
-
Mielodisplasia
Pronostico
IPSS-Molecular
Inteligencia Artificial - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/275700
Ver los metadatos del registro completo
| id |
CONICETDig_12c5d00d9e63fb3a57e788990f6c7897 |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/275700 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
Assessing the Relevance of Non-molecular Prognostic Systems for Myelodysplastic Syndrome in the Era of Next-Generation SequencingLincango Yupanki, Marco VinicioAndreoli, VerónicaRivello, Hernán GarcíaBender, AndreaCatalán, Ana IRahhal, MarilinaDelamer, RocíoAsinari, MarianaMosquera Orgueira, AdriánCastro, María BelénMela Osorio, María JoséNavickas, AliciaGrille, SofiaAgriello, Evangelina EdithArbelbide, JorgeBasquiera, Ana LisaBelli, Carolina BárbaraMielodisplasiaPronosticoIPSS-MolecularInteligencia Artificialhttps://purl.org/becyt/ford/3.2https://purl.org/becyt/ford/3Background: The Molecular International Prognostic Scoring System (IPSS-M) has improvedthe prediction of clinical outcomes for myelodysplastic syndromes (MDS). The ArtificialIntelligence Prognostic Scoring System for MDS (AIPSS-MDS), based on classical clinicalparameters, has outperformed the IPSS, revised version (IPSS-R). For the first time, wevalidated the IPSS-M and other molecular prognostic models and compared them with theestablished IPSS-R and AIPSS-MDS models using data from South American patients.Methods: Molecular and clinical data from 145 patients with MDS and 37 patients withMDS/myeloproliferative neoplasms were retrospectively analyzed.Results: Prognostic power evaluation revealed that the IPSS-M (Harrell’s concordance [C]-index: 0.75, area under the receiver operating characteristic curve [AUC]: 0.68) predictedoverall survival better than the European MDS (EuroMDS; C-index: 0.72, AUC: 0.68) andMunich Leukemia Laboratory (MLL) (C-index: 0.70, AUC: 0.64) models. The IPSS-M prognosticdiscrimination was similar to that of the AIPSS-MDS model (C-index: 0.74, AUC:0.66) and outperformed the IPSS-R model (C-index: 0.70, AUC: 0.61). Considering simplifiedlow- and high-risk groups for clinical management, after restratifying from IPSS-R (57%and 32%, respectively, hazard ratio [HR]: 2.8; P =0.002) to IPSS-M, 12.6% of patients wereupstaged, and 5% were downstaged (HR: 2.9; P =0.001). The AIPSS-MDS recategorized51% of the low-risk cohort as high-risk, with no patients being downstaged (HR: 5.6;P <0.001), consistent with most patients requiring disease-modifying therapy.Conclusions: The IPSS-M and AIPSS-MDS models provide more accurate survival prognosesthan the IPSS-R, EuroMDS, and MLL models. The AIPSS-MDS model is a valid optionfor assessing risks for all patients with MDS, especially in resource-limited centers wheremolecular testing is not currently a standard clinical practice.Fil: Lincango Yupanki, Marco Vinicio. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Medicina Experimental. Academia Nacional de Medicina de Buenos Aires. Instituto de Medicina Experimental; ArgentinaFil: Andreoli, Verónica. Hospital Privado Universitario de Cordoba.; ArgentinaFil: Rivello, Hernán García. Instituto Universidad Escuela de Medicina del Hospital Italiano; ArgentinaFil: Bender, Andrea. Laboratorio de Especialidades Bioquimicas (leb Laboratorio);Fil: Catalán, Ana I. Universidad de la República. Facultad de Medicina. Hospital de Clínicas "Dr. Manuel Quintela"; UruguayFil: Rahhal, Marilina. Provincia de Buenos Aires. Ministerio de Salud. Hospital Alta Complejidad en Red El Cruce Dr. Néstor Carlos Kirchner Samic; ArgentinaFil: Delamer, Rocío. Fundación Para Combatir la Leucemia; ArgentinaFil: Asinari, Mariana. Hospital Privado Universitario de Cordoba.; ArgentinaFil: Mosquera Orgueira, Adrián. Universidad de Santiago de Compostela; EspañaFil: Castro, María Belén. Hospital Privado Universitario de Cordoba.; ArgentinaFil: Mela Osorio, María José. Fundacion Para Combatir la Leucemia.; ArgentinaFil: Navickas, Alicia. Provincia de Buenos Aires. Ministerio de Salud. Hospital Alta Complejidad en Red El Cruce Dr. Néstor Carlos Kirchner Samic; ArgentinaFil: Grille, Sofia. Universidad de la República. Facultad de Medicina. Hospital de Clínicas "Dr. Manuel Quintela"; UruguayFil: Agriello, Evangelina Edith. Laboratorio de Especialidades Bioquimicas (leb Laboratorio);Fil: Arbelbide, Jorge. Hospital Italiano; ArgentinaFil: Basquiera, Ana Lisa. Hospital Privado Universitario de Cordoba.; ArgentinaFil: Belli, Carolina Bárbara. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Medicina Experimental. Academia Nacional de Medicina de Buenos Aires. Instituto de Medicina Experimental; ArgentinaKorean Society for Laboratory Medicine2024-07-26info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/275700Lincango Yupanki, Marco Vinicio; Andreoli, Verónica; Rivello, Hernán García; Bender, Andrea; Catalán, Ana I; et al.; Assessing the Relevance of Non-molecular Prognostic Systems for Myelodysplastic Syndrome in the Era of Next-Generation Sequencing; Korean Society for Laboratory Medicine; Annals of Laboratory Medicine; 45; 1; 26-7-2024; 44-522234-38062234-3814CONICET DigitalCONICETenginfo:eu-repo/semantics/reference/url/https://doi.org/10.3343/alm.2024.0089info:eu-repo/semantics/altIdentifier/url/http://annlabmed.org/journal/view.html?doi=10.3343/alm.2024.0089info:eu-repo/semantics/altIdentifier/doi/10.3343/alm.2024.0089info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-12-03T08:35:18Zoai:ri.conicet.gov.ar:11336/275700instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-12-03 08:35:19.007CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
Assessing the Relevance of Non-molecular Prognostic Systems for Myelodysplastic Syndrome in the Era of Next-Generation Sequencing |
| title |
Assessing the Relevance of Non-molecular Prognostic Systems for Myelodysplastic Syndrome in the Era of Next-Generation Sequencing |
| spellingShingle |
Assessing the Relevance of Non-molecular Prognostic Systems for Myelodysplastic Syndrome in the Era of Next-Generation Sequencing Lincango Yupanki, Marco Vinicio Mielodisplasia Pronostico IPSS-Molecular Inteligencia Artificial |
| title_short |
Assessing the Relevance of Non-molecular Prognostic Systems for Myelodysplastic Syndrome in the Era of Next-Generation Sequencing |
| title_full |
Assessing the Relevance of Non-molecular Prognostic Systems for Myelodysplastic Syndrome in the Era of Next-Generation Sequencing |
| title_fullStr |
Assessing the Relevance of Non-molecular Prognostic Systems for Myelodysplastic Syndrome in the Era of Next-Generation Sequencing |
| title_full_unstemmed |
Assessing the Relevance of Non-molecular Prognostic Systems for Myelodysplastic Syndrome in the Era of Next-Generation Sequencing |
| title_sort |
Assessing the Relevance of Non-molecular Prognostic Systems for Myelodysplastic Syndrome in the Era of Next-Generation Sequencing |
| dc.creator.none.fl_str_mv |
Lincango Yupanki, Marco Vinicio Andreoli, Verónica Rivello, Hernán García Bender, Andrea Catalán, Ana I Rahhal, Marilina Delamer, Rocío Asinari, Mariana Mosquera Orgueira, Adrián Castro, María Belén Mela Osorio, María José Navickas, Alicia Grille, Sofia Agriello, Evangelina Edith Arbelbide, Jorge Basquiera, Ana Lisa Belli, Carolina Bárbara |
| author |
Lincango Yupanki, Marco Vinicio |
| author_facet |
Lincango Yupanki, Marco Vinicio Andreoli, Verónica Rivello, Hernán García Bender, Andrea Catalán, Ana I Rahhal, Marilina Delamer, Rocío Asinari, Mariana Mosquera Orgueira, Adrián Castro, María Belén Mela Osorio, María José Navickas, Alicia Grille, Sofia Agriello, Evangelina Edith Arbelbide, Jorge Basquiera, Ana Lisa Belli, Carolina Bárbara |
| author_role |
author |
| author2 |
Andreoli, Verónica Rivello, Hernán García Bender, Andrea Catalán, Ana I Rahhal, Marilina Delamer, Rocío Asinari, Mariana Mosquera Orgueira, Adrián Castro, María Belén Mela Osorio, María José Navickas, Alicia Grille, Sofia Agriello, Evangelina Edith Arbelbide, Jorge Basquiera, Ana Lisa Belli, Carolina Bárbara |
| author2_role |
author author author author author author author author author author author author author author author author |
| dc.subject.none.fl_str_mv |
Mielodisplasia Pronostico IPSS-Molecular Inteligencia Artificial |
| topic |
Mielodisplasia Pronostico IPSS-Molecular Inteligencia Artificial |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/3.2 https://purl.org/becyt/ford/3 |
| dc.description.none.fl_txt_mv |
Background: The Molecular International Prognostic Scoring System (IPSS-M) has improvedthe prediction of clinical outcomes for myelodysplastic syndromes (MDS). The ArtificialIntelligence Prognostic Scoring System for MDS (AIPSS-MDS), based on classical clinicalparameters, has outperformed the IPSS, revised version (IPSS-R). For the first time, wevalidated the IPSS-M and other molecular prognostic models and compared them with theestablished IPSS-R and AIPSS-MDS models using data from South American patients.Methods: Molecular and clinical data from 145 patients with MDS and 37 patients withMDS/myeloproliferative neoplasms were retrospectively analyzed.Results: Prognostic power evaluation revealed that the IPSS-M (Harrell’s concordance [C]-index: 0.75, area under the receiver operating characteristic curve [AUC]: 0.68) predictedoverall survival better than the European MDS (EuroMDS; C-index: 0.72, AUC: 0.68) andMunich Leukemia Laboratory (MLL) (C-index: 0.70, AUC: 0.64) models. The IPSS-M prognosticdiscrimination was similar to that of the AIPSS-MDS model (C-index: 0.74, AUC:0.66) and outperformed the IPSS-R model (C-index: 0.70, AUC: 0.61). Considering simplifiedlow- and high-risk groups for clinical management, after restratifying from IPSS-R (57%and 32%, respectively, hazard ratio [HR]: 2.8; P =0.002) to IPSS-M, 12.6% of patients wereupstaged, and 5% were downstaged (HR: 2.9; P =0.001). The AIPSS-MDS recategorized51% of the low-risk cohort as high-risk, with no patients being downstaged (HR: 5.6;P <0.001), consistent with most patients requiring disease-modifying therapy.Conclusions: The IPSS-M and AIPSS-MDS models provide more accurate survival prognosesthan the IPSS-R, EuroMDS, and MLL models. The AIPSS-MDS model is a valid optionfor assessing risks for all patients with MDS, especially in resource-limited centers wheremolecular testing is not currently a standard clinical practice. Fil: Lincango Yupanki, Marco Vinicio. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Medicina Experimental. Academia Nacional de Medicina de Buenos Aires. Instituto de Medicina Experimental; Argentina Fil: Andreoli, Verónica. Hospital Privado Universitario de Cordoba.; Argentina Fil: Rivello, Hernán García. Instituto Universidad Escuela de Medicina del Hospital Italiano; Argentina Fil: Bender, Andrea. Laboratorio de Especialidades Bioquimicas (leb Laboratorio); Fil: Catalán, Ana I. Universidad de la República. Facultad de Medicina. Hospital de Clínicas "Dr. Manuel Quintela"; Uruguay Fil: Rahhal, Marilina. Provincia de Buenos Aires. Ministerio de Salud. Hospital Alta Complejidad en Red El Cruce Dr. Néstor Carlos Kirchner Samic; Argentina Fil: Delamer, Rocío. Fundación Para Combatir la Leucemia; Argentina Fil: Asinari, Mariana. Hospital Privado Universitario de Cordoba.; Argentina Fil: Mosquera Orgueira, Adrián. Universidad de Santiago de Compostela; España Fil: Castro, María Belén. Hospital Privado Universitario de Cordoba.; Argentina Fil: Mela Osorio, María José. Fundacion Para Combatir la Leucemia.; Argentina Fil: Navickas, Alicia. Provincia de Buenos Aires. Ministerio de Salud. Hospital Alta Complejidad en Red El Cruce Dr. Néstor Carlos Kirchner Samic; Argentina Fil: Grille, Sofia. Universidad de la República. Facultad de Medicina. Hospital de Clínicas "Dr. Manuel Quintela"; Uruguay Fil: Agriello, Evangelina Edith. Laboratorio de Especialidades Bioquimicas (leb Laboratorio); Fil: Arbelbide, Jorge. Hospital Italiano; Argentina Fil: Basquiera, Ana Lisa. Hospital Privado Universitario de Cordoba.; Argentina Fil: Belli, Carolina Bárbara. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Medicina Experimental. Academia Nacional de Medicina de Buenos Aires. Instituto de Medicina Experimental; Argentina |
| description |
Background: The Molecular International Prognostic Scoring System (IPSS-M) has improvedthe prediction of clinical outcomes for myelodysplastic syndromes (MDS). The ArtificialIntelligence Prognostic Scoring System for MDS (AIPSS-MDS), based on classical clinicalparameters, has outperformed the IPSS, revised version (IPSS-R). For the first time, wevalidated the IPSS-M and other molecular prognostic models and compared them with theestablished IPSS-R and AIPSS-MDS models using data from South American patients.Methods: Molecular and clinical data from 145 patients with MDS and 37 patients withMDS/myeloproliferative neoplasms were retrospectively analyzed.Results: Prognostic power evaluation revealed that the IPSS-M (Harrell’s concordance [C]-index: 0.75, area under the receiver operating characteristic curve [AUC]: 0.68) predictedoverall survival better than the European MDS (EuroMDS; C-index: 0.72, AUC: 0.68) andMunich Leukemia Laboratory (MLL) (C-index: 0.70, AUC: 0.64) models. The IPSS-M prognosticdiscrimination was similar to that of the AIPSS-MDS model (C-index: 0.74, AUC:0.66) and outperformed the IPSS-R model (C-index: 0.70, AUC: 0.61). Considering simplifiedlow- and high-risk groups for clinical management, after restratifying from IPSS-R (57%and 32%, respectively, hazard ratio [HR]: 2.8; P =0.002) to IPSS-M, 12.6% of patients wereupstaged, and 5% were downstaged (HR: 2.9; P =0.001). The AIPSS-MDS recategorized51% of the low-risk cohort as high-risk, with no patients being downstaged (HR: 5.6;P <0.001), consistent with most patients requiring disease-modifying therapy.Conclusions: The IPSS-M and AIPSS-MDS models provide more accurate survival prognosesthan the IPSS-R, EuroMDS, and MLL models. The AIPSS-MDS model is a valid optionfor assessing risks for all patients with MDS, especially in resource-limited centers wheremolecular testing is not currently a standard clinical practice. |
| publishDate |
2024 |
| dc.date.none.fl_str_mv |
2024-07-26 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/275700 Lincango Yupanki, Marco Vinicio; Andreoli, Verónica; Rivello, Hernán García; Bender, Andrea; Catalán, Ana I; et al.; Assessing the Relevance of Non-molecular Prognostic Systems for Myelodysplastic Syndrome in the Era of Next-Generation Sequencing; Korean Society for Laboratory Medicine; Annals of Laboratory Medicine; 45; 1; 26-7-2024; 44-52 2234-3806 2234-3814 CONICET Digital CONICET |
| url |
http://hdl.handle.net/11336/275700 |
| identifier_str_mv |
Lincango Yupanki, Marco Vinicio; Andreoli, Verónica; Rivello, Hernán García; Bender, Andrea; Catalán, Ana I; et al.; Assessing the Relevance of Non-molecular Prognostic Systems for Myelodysplastic Syndrome in the Era of Next-Generation Sequencing; Korean Society for Laboratory Medicine; Annals of Laboratory Medicine; 45; 1; 26-7-2024; 44-52 2234-3806 2234-3814 CONICET Digital CONICET |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/reference/url/https://doi.org/10.3343/alm.2024.0089 info:eu-repo/semantics/altIdentifier/url/http://annlabmed.org/journal/view.html?doi=10.3343/alm.2024.0089 info:eu-repo/semantics/altIdentifier/doi/10.3343/alm.2024.0089 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
Korean Society for Laboratory Medicine |
| publisher.none.fl_str_mv |
Korean Society for Laboratory Medicine |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1850504469183201280 |
| score |
12.913667 |