Belief Revision in Structured Probabilistic Argumentation

Autores
Shakarian, Paulo; Simari, Gerardo; Falappa, Marcelo Alejandro
Año de publicación
2014
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
In real-world applications, knowledge bases consisting of all the information at hand for a specific domain, along with the current state of affairs, are bound to contain contradictory data coming from different sources, as well as data with varying degrees of uncertainty attached. Likewise, an important aspect of the effort associated with maintaining knowledge bases is deciding what information is no longer useful; pieces of information (such as intelligence reports) may be outdated, may come from sources that have recently been discovered to be of low quality, or abundant evidence may be available that contradicts them. In this paper, we propose a probabilistic structured argumentation framework that arises from the extension of Presumptive Defeasible Logic Programming (PreDeLP) with probabilistic models, and argue that this formalism is capable of addressing the basic issues of handling contradictory and uncertain data. Then, to address the last issue, we focus on the study of non-prioritized belief revision operations over probabilistic PreDeLP programs. We propose a set of rationality postulates – based on well-known ones developed for classical knowledge bases – that characterize how such operations should behave, and study a class of operators along with theoretical relationships with the proposed postulates, including a representation theorem stating the equivalence between this class and the class of operators characterized by the postulates.
Fil: Shakarian, Paulo . U.S. Military Academy. Department of Electrical Engineering and Computer Science; Estados Unidos
Fil: Simari, Gerardo . University of Oxford; Reino Unido
Fil: Falappa, Marcelo Alejandro. Universidad Nacional del Sur. Departamento de Ciencia e Ingeniería de la Computación. Laboratorio de Investigación y Desarrollo en Inteligencia Artificial; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Materia
Belief Revision
Probabilistic Argumentation
Cybersecurity
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/12636

id CONICETDig_94ce07b1976189f2fa73e0901c48bfbf
oai_identifier_str oai:ri.conicet.gov.ar:11336/12636
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Belief Revision in Structured Probabilistic ArgumentationShakarian, Paulo Simari, Gerardo Falappa, Marcelo AlejandroBelief RevisionProbabilistic ArgumentationCybersecurityhttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1In real-world applications, knowledge bases consisting of all the information at hand for a specific domain, along with the current state of affairs, are bound to contain contradictory data coming from different sources, as well as data with varying degrees of uncertainty attached. Likewise, an important aspect of the effort associated with maintaining knowledge bases is deciding what information is no longer useful; pieces of information (such as intelligence reports) may be outdated, may come from sources that have recently been discovered to be of low quality, or abundant evidence may be available that contradicts them. In this paper, we propose a probabilistic structured argumentation framework that arises from the extension of Presumptive Defeasible Logic Programming (PreDeLP) with probabilistic models, and argue that this formalism is capable of addressing the basic issues of handling contradictory and uncertain data. Then, to address the last issue, we focus on the study of non-prioritized belief revision operations over probabilistic PreDeLP programs. We propose a set of rationality postulates – based on well-known ones developed for classical knowledge bases – that characterize how such operations should behave, and study a class of operators along with theoretical relationships with the proposed postulates, including a representation theorem stating the equivalence between this class and the class of operators characterized by the postulates.Fil: Shakarian, Paulo . U.S. Military Academy. Department of Electrical Engineering and Computer Science; Estados UnidosFil: Simari, Gerardo . University of Oxford; Reino UnidoFil: Falappa, Marcelo Alejandro. Universidad Nacional del Sur. Departamento de Ciencia e Ingeniería de la Computación. Laboratorio de Investigación y Desarrollo en Inteligencia Artificial; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaSpringer2014-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/12636Shakarian, Paulo ; Simari, Gerardo ; Falappa, Marcelo Alejandro; Belief Revision in Structured Probabilistic Argumentation; Springer; Lecture Notes In Computer Science; 8367; 12-2014; 324-3430302-97431573-7470enginfo:eu-repo/semantics/altIdentifier/url/http://link.springer.com/chapter/10.1007/978-3-319-04939-7_16info:eu-repo/semantics/altIdentifier/doi/10.1007/978-3-319-04939-7_16info:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/1401.1475info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:59:50Zoai:ri.conicet.gov.ar:11336/12636instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:59:50.675CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Belief Revision in Structured Probabilistic Argumentation
title Belief Revision in Structured Probabilistic Argumentation
spellingShingle Belief Revision in Structured Probabilistic Argumentation
Shakarian, Paulo
Belief Revision
Probabilistic Argumentation
Cybersecurity
title_short Belief Revision in Structured Probabilistic Argumentation
title_full Belief Revision in Structured Probabilistic Argumentation
title_fullStr Belief Revision in Structured Probabilistic Argumentation
title_full_unstemmed Belief Revision in Structured Probabilistic Argumentation
title_sort Belief Revision in Structured Probabilistic Argumentation
dc.creator.none.fl_str_mv Shakarian, Paulo
Simari, Gerardo
Falappa, Marcelo Alejandro
author Shakarian, Paulo
author_facet Shakarian, Paulo
Simari, Gerardo
Falappa, Marcelo Alejandro
author_role author
author2 Simari, Gerardo
Falappa, Marcelo Alejandro
author2_role author
author
dc.subject.none.fl_str_mv Belief Revision
Probabilistic Argumentation
Cybersecurity
topic Belief Revision
Probabilistic Argumentation
Cybersecurity
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.2
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv In real-world applications, knowledge bases consisting of all the information at hand for a specific domain, along with the current state of affairs, are bound to contain contradictory data coming from different sources, as well as data with varying degrees of uncertainty attached. Likewise, an important aspect of the effort associated with maintaining knowledge bases is deciding what information is no longer useful; pieces of information (such as intelligence reports) may be outdated, may come from sources that have recently been discovered to be of low quality, or abundant evidence may be available that contradicts them. In this paper, we propose a probabilistic structured argumentation framework that arises from the extension of Presumptive Defeasible Logic Programming (PreDeLP) with probabilistic models, and argue that this formalism is capable of addressing the basic issues of handling contradictory and uncertain data. Then, to address the last issue, we focus on the study of non-prioritized belief revision operations over probabilistic PreDeLP programs. We propose a set of rationality postulates – based on well-known ones developed for classical knowledge bases – that characterize how such operations should behave, and study a class of operators along with theoretical relationships with the proposed postulates, including a representation theorem stating the equivalence between this class and the class of operators characterized by the postulates.
Fil: Shakarian, Paulo . U.S. Military Academy. Department of Electrical Engineering and Computer Science; Estados Unidos
Fil: Simari, Gerardo . University of Oxford; Reino Unido
Fil: Falappa, Marcelo Alejandro. Universidad Nacional del Sur. Departamento de Ciencia e Ingeniería de la Computación. Laboratorio de Investigación y Desarrollo en Inteligencia Artificial; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
description In real-world applications, knowledge bases consisting of all the information at hand for a specific domain, along with the current state of affairs, are bound to contain contradictory data coming from different sources, as well as data with varying degrees of uncertainty attached. Likewise, an important aspect of the effort associated with maintaining knowledge bases is deciding what information is no longer useful; pieces of information (such as intelligence reports) may be outdated, may come from sources that have recently been discovered to be of low quality, or abundant evidence may be available that contradicts them. In this paper, we propose a probabilistic structured argumentation framework that arises from the extension of Presumptive Defeasible Logic Programming (PreDeLP) with probabilistic models, and argue that this formalism is capable of addressing the basic issues of handling contradictory and uncertain data. Then, to address the last issue, we focus on the study of non-prioritized belief revision operations over probabilistic PreDeLP programs. We propose a set of rationality postulates – based on well-known ones developed for classical knowledge bases – that characterize how such operations should behave, and study a class of operators along with theoretical relationships with the proposed postulates, including a representation theorem stating the equivalence between this class and the class of operators characterized by the postulates.
publishDate 2014
dc.date.none.fl_str_mv 2014-12
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/12636
Shakarian, Paulo ; Simari, Gerardo ; Falappa, Marcelo Alejandro; Belief Revision in Structured Probabilistic Argumentation; Springer; Lecture Notes In Computer Science; 8367; 12-2014; 324-343
0302-9743
1573-7470
url http://hdl.handle.net/11336/12636
identifier_str_mv Shakarian, Paulo ; Simari, Gerardo ; Falappa, Marcelo Alejandro; Belief Revision in Structured Probabilistic Argumentation; Springer; Lecture Notes In Computer Science; 8367; 12-2014; 324-343
0302-9743
1573-7470
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://link.springer.com/chapter/10.1007/978-3-319-04939-7_16
info:eu-repo/semantics/altIdentifier/doi/10.1007/978-3-319-04939-7_16
info:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/1401.1475
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Springer
publisher.none.fl_str_mv Springer
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842269604248813568
score 13.13397