Confluence in Probabilistic Rewriting

Autores
Díaz Caro, Alejandro; Martínez, Guido
Año de publicación
2018
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Driven by the interest of reasoning about probabilistic programming languages, we set out to study a notion of uniqueness of normal forms for them. To provide a tractable proof method for it, we define a property of distribution confluence which is shown to imply the desired uniqueness (even for infinite sequences of reduction) and further properties. We then carry over several criteria from the classical case, such as Newman's lemma, to simplify proving confluence in concrete languages. Using these criteria, we obtain simple proofs of confluence for λ1, an affine probabilistic λ-calculus, and for Q*, a quantum programming language for which a related property has already been proven in the literature.
Fil: Díaz Caro, Alejandro. Universidad Nacional de Quilmes; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria; Argentina
Fil: Martínez, Guido. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; Argentina
Materia
ABSTRACT REWRITING SYSTEM
CONFLUENCE
PROBABILISTIC REWRITING
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/89404

id CONICETDig_1da514bebb8f240f070e177e2e906c5c
oai_identifier_str oai:ri.conicet.gov.ar:11336/89404
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Confluence in Probabilistic RewritingDíaz Caro, AlejandroMartínez, GuidoABSTRACT REWRITING SYSTEMCONFLUENCEPROBABILISTIC REWRITINGhttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1Driven by the interest of reasoning about probabilistic programming languages, we set out to study a notion of uniqueness of normal forms for them. To provide a tractable proof method for it, we define a property of distribution confluence which is shown to imply the desired uniqueness (even for infinite sequences of reduction) and further properties. We then carry over several criteria from the classical case, such as Newman's lemma, to simplify proving confluence in concrete languages. Using these criteria, we obtain simple proofs of confluence for λ1, an affine probabilistic λ-calculus, and for Q*, a quantum programming language for which a related property has already been proven in the literature.Fil: Díaz Caro, Alejandro. Universidad Nacional de Quilmes; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria; ArgentinaFil: Martínez, Guido. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; ArgentinaElsevier2018-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/89404Díaz Caro, Alejandro; Martínez, Guido; Confluence in Probabilistic Rewriting; Elsevier; Electronic Notes in Theoretical Computer Science; 338; 10-2018; 115-1311571-0661CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S1571066118300744info:eu-repo/semantics/altIdentifier/doi/10.1016/j.entcs.2018.10.008info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:05:39Zoai:ri.conicet.gov.ar:11336/89404instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:05:39.659CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Confluence in Probabilistic Rewriting
title Confluence in Probabilistic Rewriting
spellingShingle Confluence in Probabilistic Rewriting
Díaz Caro, Alejandro
ABSTRACT REWRITING SYSTEM
CONFLUENCE
PROBABILISTIC REWRITING
title_short Confluence in Probabilistic Rewriting
title_full Confluence in Probabilistic Rewriting
title_fullStr Confluence in Probabilistic Rewriting
title_full_unstemmed Confluence in Probabilistic Rewriting
title_sort Confluence in Probabilistic Rewriting
dc.creator.none.fl_str_mv Díaz Caro, Alejandro
Martínez, Guido
author Díaz Caro, Alejandro
author_facet Díaz Caro, Alejandro
Martínez, Guido
author_role author
author2 Martínez, Guido
author2_role author
dc.subject.none.fl_str_mv ABSTRACT REWRITING SYSTEM
CONFLUENCE
PROBABILISTIC REWRITING
topic ABSTRACT REWRITING SYSTEM
CONFLUENCE
PROBABILISTIC REWRITING
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.2
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Driven by the interest of reasoning about probabilistic programming languages, we set out to study a notion of uniqueness of normal forms for them. To provide a tractable proof method for it, we define a property of distribution confluence which is shown to imply the desired uniqueness (even for infinite sequences of reduction) and further properties. We then carry over several criteria from the classical case, such as Newman's lemma, to simplify proving confluence in concrete languages. Using these criteria, we obtain simple proofs of confluence for λ1, an affine probabilistic λ-calculus, and for Q*, a quantum programming language for which a related property has already been proven in the literature.
Fil: Díaz Caro, Alejandro. Universidad Nacional de Quilmes; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria; Argentina
Fil: Martínez, Guido. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; Argentina
description Driven by the interest of reasoning about probabilistic programming languages, we set out to study a notion of uniqueness of normal forms for them. To provide a tractable proof method for it, we define a property of distribution confluence which is shown to imply the desired uniqueness (even for infinite sequences of reduction) and further properties. We then carry over several criteria from the classical case, such as Newman's lemma, to simplify proving confluence in concrete languages. Using these criteria, we obtain simple proofs of confluence for λ1, an affine probabilistic λ-calculus, and for Q*, a quantum programming language for which a related property has already been proven in the literature.
publishDate 2018
dc.date.none.fl_str_mv 2018-10
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/89404
Díaz Caro, Alejandro; Martínez, Guido; Confluence in Probabilistic Rewriting; Elsevier; Electronic Notes in Theoretical Computer Science; 338; 10-2018; 115-131
1571-0661
CONICET Digital
CONICET
url http://hdl.handle.net/11336/89404
identifier_str_mv Díaz Caro, Alejandro; Martínez, Guido; Confluence in Probabilistic Rewriting; Elsevier; Electronic Notes in Theoretical Computer Science; 338; 10-2018; 115-131
1571-0661
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S1571066118300744
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.entcs.2018.10.008
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier
publisher.none.fl_str_mv Elsevier
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842269921348681728
score 13.13397