Dealing with Semantic Knowledge in Robotics with a Probabilistic Description Logic

Autores
Corrêa, Fabiano; Belizia Polastro, Rodrigo; Gagliardi Cozman, Fabio; Okamoto Jr., Jun
Año de publicación
2010
Idioma
inglés
Tipo de recurso
documento de conferencia
Estado
versión publicada
Descripción
One has often to deal with large quantities of data in robotics, either coming from sensors or from background knowledge. Background knowledge, with attached semantics, are usually modeled logically, and sensor data, due to uncertainties concerning their nature, are modeled probabilistically. In this paper we present a scalable method for spatial mapping of indoor environments, through the use of a probabilistic ontology. Reasoning with this ontology allows segmentation and tagging of sensor data acquired by a robot during navigation. We report experiments with a real robot to validate our approach, thus moving closer to the goal of integrating mapping and semantic labeling processes.
Sociedad Argentina de Informática e Investigación Operativa
Materia
Ciencias Informáticas
robotics
probabilistic ontology
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-sa/4.0/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/152574

id SEDICI_891c66861b7c5f0ba8c8b6377efb42b7
oai_identifier_str oai:sedici.unlp.edu.ar:10915/152574
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling Dealing with Semantic Knowledge in Robotics with a Probabilistic Description LogicCorrêa, FabianoBelizia Polastro, RodrigoGagliardi Cozman, FabioOkamoto Jr., JunCiencias Informáticasroboticsprobabilistic ontologyOne has often to deal with large quantities of data in robotics, either coming from sensors or from background knowledge. Background knowledge, with attached semantics, are usually modeled logically, and sensor data, due to uncertainties concerning their nature, are modeled probabilistically. In this paper we present a scalable method for spatial mapping of indoor environments, through the use of a probabilistic ontology. Reasoning with this ontology allows segmentation and tagging of sensor data acquired by a robot during navigation. We report experiments with a real robot to validate our approach, thus moving closer to the goal of integrating mapping and semantic labeling processes.Sociedad Argentina de Informática e Investigación Operativa2010info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdf1-12http://sedici.unlp.edu.ar/handle/10915/152574enginfo:eu-repo/semantics/altIdentifier/url/http://39jaiio.sadio.org.ar/sites/default/files/39jaiio-asai-01.pdfinfo:eu-repo/semantics/altIdentifier/issn/1850-2784info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T11:39:21Zoai:sedici.unlp.edu.ar:10915/152574Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 11:39:21.743SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv Dealing with Semantic Knowledge in Robotics with a Probabilistic Description Logic
title Dealing with Semantic Knowledge in Robotics with a Probabilistic Description Logic
spellingShingle Dealing with Semantic Knowledge in Robotics with a Probabilistic Description Logic
Corrêa, Fabiano
Ciencias Informáticas
robotics
probabilistic ontology
title_short Dealing with Semantic Knowledge in Robotics with a Probabilistic Description Logic
title_full Dealing with Semantic Knowledge in Robotics with a Probabilistic Description Logic
title_fullStr Dealing with Semantic Knowledge in Robotics with a Probabilistic Description Logic
title_full_unstemmed Dealing with Semantic Knowledge in Robotics with a Probabilistic Description Logic
title_sort Dealing with Semantic Knowledge in Robotics with a Probabilistic Description Logic
dc.creator.none.fl_str_mv Corrêa, Fabiano
Belizia Polastro, Rodrigo
Gagliardi Cozman, Fabio
Okamoto Jr., Jun
author Corrêa, Fabiano
author_facet Corrêa, Fabiano
Belizia Polastro, Rodrigo
Gagliardi Cozman, Fabio
Okamoto Jr., Jun
author_role author
author2 Belizia Polastro, Rodrigo
Gagliardi Cozman, Fabio
Okamoto Jr., Jun
author2_role author
author
author
dc.subject.none.fl_str_mv Ciencias Informáticas
robotics
probabilistic ontology
topic Ciencias Informáticas
robotics
probabilistic ontology
dc.description.none.fl_txt_mv One has often to deal with large quantities of data in robotics, either coming from sensors or from background knowledge. Background knowledge, with attached semantics, are usually modeled logically, and sensor data, due to uncertainties concerning their nature, are modeled probabilistically. In this paper we present a scalable method for spatial mapping of indoor environments, through the use of a probabilistic ontology. Reasoning with this ontology allows segmentation and tagging of sensor data acquired by a robot during navigation. We report experiments with a real robot to validate our approach, thus moving closer to the goal of integrating mapping and semantic labeling processes.
Sociedad Argentina de Informática e Investigación Operativa
description One has often to deal with large quantities of data in robotics, either coming from sensors or from background knowledge. Background knowledge, with attached semantics, are usually modeled logically, and sensor data, due to uncertainties concerning their nature, are modeled probabilistically. In this paper we present a scalable method for spatial mapping of indoor environments, through the use of a probabilistic ontology. Reasoning with this ontology allows segmentation and tagging of sensor data acquired by a robot during navigation. We report experiments with a real robot to validate our approach, thus moving closer to the goal of integrating mapping and semantic labeling processes.
publishDate 2010
dc.date.none.fl_str_mv 2010
dc.type.none.fl_str_mv info:eu-repo/semantics/conferenceObject
info:eu-repo/semantics/publishedVersion
Objeto de conferencia
http://purl.org/coar/resource_type/c_5794
info:ar-repo/semantics/documentoDeConferencia
format conferenceObject
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/152574
url http://sedici.unlp.edu.ar/handle/10915/152574
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://39jaiio.sadio.org.ar/sites/default/files/39jaiio-asai-01.pdf
info:eu-repo/semantics/altIdentifier/issn/1850-2784
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
dc.format.none.fl_str_mv application/pdf
1-12
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1844616267599708160
score 13.070432