Dealing with Semantic Knowledge in Robotics with a Probabilistic Description Logic
- Autores
- Corrêa, Fabiano; Belizia Polastro, Rodrigo; Gagliardi Cozman, Fabio; Okamoto Jr., Jun
- Año de publicación
- 2010
- Idioma
- inglés
- Tipo de recurso
- documento de conferencia
- Estado
- versión publicada
- Descripción
- One has often to deal with large quantities of data in robotics, either coming from sensors or from background knowledge. Background knowledge, with attached semantics, are usually modeled logically, and sensor data, due to uncertainties concerning their nature, are modeled probabilistically. In this paper we present a scalable method for spatial mapping of indoor environments, through the use of a probabilistic ontology. Reasoning with this ontology allows segmentation and tagging of sensor data acquired by a robot during navigation. We report experiments with a real robot to validate our approach, thus moving closer to the goal of integrating mapping and semantic labeling processes.
Sociedad Argentina de Informática e Investigación Operativa - Materia
-
Ciencias Informáticas
robotics
probabilistic ontology - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/4.0/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/152574
Ver los metadatos del registro completo
id |
SEDICI_891c66861b7c5f0ba8c8b6377efb42b7 |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/152574 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
Dealing with Semantic Knowledge in Robotics with a Probabilistic Description LogicCorrêa, FabianoBelizia Polastro, RodrigoGagliardi Cozman, FabioOkamoto Jr., JunCiencias Informáticasroboticsprobabilistic ontologyOne has often to deal with large quantities of data in robotics, either coming from sensors or from background knowledge. Background knowledge, with attached semantics, are usually modeled logically, and sensor data, due to uncertainties concerning their nature, are modeled probabilistically. In this paper we present a scalable method for spatial mapping of indoor environments, through the use of a probabilistic ontology. Reasoning with this ontology allows segmentation and tagging of sensor data acquired by a robot during navigation. We report experiments with a real robot to validate our approach, thus moving closer to the goal of integrating mapping and semantic labeling processes.Sociedad Argentina de Informática e Investigación Operativa2010info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdf1-12http://sedici.unlp.edu.ar/handle/10915/152574enginfo:eu-repo/semantics/altIdentifier/url/http://39jaiio.sadio.org.ar/sites/default/files/39jaiio-asai-01.pdfinfo:eu-repo/semantics/altIdentifier/issn/1850-2784info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T11:39:21Zoai:sedici.unlp.edu.ar:10915/152574Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 11:39:21.743SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
Dealing with Semantic Knowledge in Robotics with a Probabilistic Description Logic |
title |
Dealing with Semantic Knowledge in Robotics with a Probabilistic Description Logic |
spellingShingle |
Dealing with Semantic Knowledge in Robotics with a Probabilistic Description Logic Corrêa, Fabiano Ciencias Informáticas robotics probabilistic ontology |
title_short |
Dealing with Semantic Knowledge in Robotics with a Probabilistic Description Logic |
title_full |
Dealing with Semantic Knowledge in Robotics with a Probabilistic Description Logic |
title_fullStr |
Dealing with Semantic Knowledge in Robotics with a Probabilistic Description Logic |
title_full_unstemmed |
Dealing with Semantic Knowledge in Robotics with a Probabilistic Description Logic |
title_sort |
Dealing with Semantic Knowledge in Robotics with a Probabilistic Description Logic |
dc.creator.none.fl_str_mv |
Corrêa, Fabiano Belizia Polastro, Rodrigo Gagliardi Cozman, Fabio Okamoto Jr., Jun |
author |
Corrêa, Fabiano |
author_facet |
Corrêa, Fabiano Belizia Polastro, Rodrigo Gagliardi Cozman, Fabio Okamoto Jr., Jun |
author_role |
author |
author2 |
Belizia Polastro, Rodrigo Gagliardi Cozman, Fabio Okamoto Jr., Jun |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
Ciencias Informáticas robotics probabilistic ontology |
topic |
Ciencias Informáticas robotics probabilistic ontology |
dc.description.none.fl_txt_mv |
One has often to deal with large quantities of data in robotics, either coming from sensors or from background knowledge. Background knowledge, with attached semantics, are usually modeled logically, and sensor data, due to uncertainties concerning their nature, are modeled probabilistically. In this paper we present a scalable method for spatial mapping of indoor environments, through the use of a probabilistic ontology. Reasoning with this ontology allows segmentation and tagging of sensor data acquired by a robot during navigation. We report experiments with a real robot to validate our approach, thus moving closer to the goal of integrating mapping and semantic labeling processes. Sociedad Argentina de Informática e Investigación Operativa |
description |
One has often to deal with large quantities of data in robotics, either coming from sensors or from background knowledge. Background knowledge, with attached semantics, are usually modeled logically, and sensor data, due to uncertainties concerning their nature, are modeled probabilistically. In this paper we present a scalable method for spatial mapping of indoor environments, through the use of a probabilistic ontology. Reasoning with this ontology allows segmentation and tagging of sensor data acquired by a robot during navigation. We report experiments with a real robot to validate our approach, thus moving closer to the goal of integrating mapping and semantic labeling processes. |
publishDate |
2010 |
dc.date.none.fl_str_mv |
2010 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject info:eu-repo/semantics/publishedVersion Objeto de conferencia http://purl.org/coar/resource_type/c_5794 info:ar-repo/semantics/documentoDeConferencia |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/152574 |
url |
http://sedici.unlp.edu.ar/handle/10915/152574 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://39jaiio.sadio.org.ar/sites/default/files/39jaiio-asai-01.pdf info:eu-repo/semantics/altIdentifier/issn/1850-2784 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
dc.format.none.fl_str_mv |
application/pdf 1-12 |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1844616267599708160 |
score |
13.070432 |