Electrostatically actuated encased cantilevers
- Autores
- Desbiolles, Benoit X.E.; Furlan, Gabriela; Schwartzberg, Adam M.; Ashby, Paul D.; Ziegler, Dominik
- Año de publicación
- 2018
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Background: Encased cantilevers are novel force sensors that overcome major limitations of liquid scanning probe microscopy. By trapping air inside an encasement around the cantilever, they provide low damping and maintain high resonance frequencies for exquisitely low tip-sample interaction forces even when immersed in a viscous fluid. Quantitative measurements of stiffness, energy dissipation and tip-sample interactions using dynamic force sensors remain challenging due to spurious resonances of the system. Results: We demonstrate for the first time electrostatic actuation with a built-in electrode. Solely actuating the cantilever results in a frequency response free of spurious peaks. We analyze static, harmonic, and sub-harmonic actuation modes. Sub-harmonic mode results in stable amplitudes unaffected by potential offsets or fluctuations of the electrical surface potential. We present a simple plate capacitor model to describe the electrostatic actuation. The predicted deflection and amplitudes match experimental results within a few percent. Consequently, target amplitudes can be set by the drive voltage without requiring calibration of optical lever sensitivity. Furthermore, the excitation bandwidth outperforms most other excitation methods. Conclusion: Compatible with any instrument using optical beam deflection detection electrostatic actuation in encased cantilevers combines ultra-low force noise with clean and stable excitation well-suited for quantitative measurements in liquid, compatible with air, or vacuum environments.
Fil: Desbiolles, Benoit X.E.. Lawrence Berkeley National Laboratory; Estados Unidos
Fil: Furlan, Gabriela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Centro de Investigaciones en Bioquímica Clínica e Inmunología; Argentina. Lawrence Berkeley National Laboratory; Estados Unidos
Fil: Schwartzberg, Adam M.. Lawrence Berkeley National Laboratory; Estados Unidos
Fil: Ashby, Paul D.. Lawrence Berkeley National Laboratory; Estados Unidos
Fil: Ziegler, Dominik. Scuba Probe Technologies LLC; Estados Unidos. Lawrence Berkeley National Laboratory; Estados Unidos - Materia
-
AMPLITUDE CALIBRATION
ATOMIC FORCE MICROSCOPY
ELECTROSTATIC EXCITATION
ENCASED CANTILEVERS
LIQUID AFM - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/95853
Ver los metadatos del registro completo
| id |
CONICETDig_0e31e060da05eca6b4f79cced3fe7db6 |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/95853 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
Electrostatically actuated encased cantileversDesbiolles, Benoit X.E.Furlan, GabrielaSchwartzberg, Adam M.Ashby, Paul D.Ziegler, DominikAMPLITUDE CALIBRATIONATOMIC FORCE MICROSCOPYELECTROSTATIC EXCITATIONENCASED CANTILEVERSLIQUID AFMhttps://purl.org/becyt/ford/2.10https://purl.org/becyt/ford/2Background: Encased cantilevers are novel force sensors that overcome major limitations of liquid scanning probe microscopy. By trapping air inside an encasement around the cantilever, they provide low damping and maintain high resonance frequencies for exquisitely low tip-sample interaction forces even when immersed in a viscous fluid. Quantitative measurements of stiffness, energy dissipation and tip-sample interactions using dynamic force sensors remain challenging due to spurious resonances of the system. Results: We demonstrate for the first time electrostatic actuation with a built-in electrode. Solely actuating the cantilever results in a frequency response free of spurious peaks. We analyze static, harmonic, and sub-harmonic actuation modes. Sub-harmonic mode results in stable amplitudes unaffected by potential offsets or fluctuations of the electrical surface potential. We present a simple plate capacitor model to describe the electrostatic actuation. The predicted deflection and amplitudes match experimental results within a few percent. Consequently, target amplitudes can be set by the drive voltage without requiring calibration of optical lever sensitivity. Furthermore, the excitation bandwidth outperforms most other excitation methods. Conclusion: Compatible with any instrument using optical beam deflection detection electrostatic actuation in encased cantilevers combines ultra-low force noise with clean and stable excitation well-suited for quantitative measurements in liquid, compatible with air, or vacuum environments.Fil: Desbiolles, Benoit X.E.. Lawrence Berkeley National Laboratory; Estados UnidosFil: Furlan, Gabriela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Centro de Investigaciones en Bioquímica Clínica e Inmunología; Argentina. Lawrence Berkeley National Laboratory; Estados UnidosFil: Schwartzberg, Adam M.. Lawrence Berkeley National Laboratory; Estados UnidosFil: Ashby, Paul D.. Lawrence Berkeley National Laboratory; Estados UnidosFil: Ziegler, Dominik. Scuba Probe Technologies LLC; Estados Unidos. Lawrence Berkeley National Laboratory; Estados UnidosBeilstein-Institut züur Forderung der Chemischen Wissenschaften2018-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/95853Desbiolles, Benoit X.E.; Furlan, Gabriela; Schwartzberg, Adam M.; Ashby, Paul D.; Ziegler, Dominik; Electrostatically actuated encased cantilevers; Beilstein-Institut züur Forderung der Chemischen Wissenschaften; Beilstein Journal of Nanotechnology; 9; 1; 5-2018; 1381-13892190-4286CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.beilstein-journals.org/bjnano/articles/9/130info:eu-repo/semantics/altIdentifier/doi/10.3762/bjnano.9.130info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-22T11:15:36Zoai:ri.conicet.gov.ar:11336/95853instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-22 11:15:36.797CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
Electrostatically actuated encased cantilevers |
| title |
Electrostatically actuated encased cantilevers |
| spellingShingle |
Electrostatically actuated encased cantilevers Desbiolles, Benoit X.E. AMPLITUDE CALIBRATION ATOMIC FORCE MICROSCOPY ELECTROSTATIC EXCITATION ENCASED CANTILEVERS LIQUID AFM |
| title_short |
Electrostatically actuated encased cantilevers |
| title_full |
Electrostatically actuated encased cantilevers |
| title_fullStr |
Electrostatically actuated encased cantilevers |
| title_full_unstemmed |
Electrostatically actuated encased cantilevers |
| title_sort |
Electrostatically actuated encased cantilevers |
| dc.creator.none.fl_str_mv |
Desbiolles, Benoit X.E. Furlan, Gabriela Schwartzberg, Adam M. Ashby, Paul D. Ziegler, Dominik |
| author |
Desbiolles, Benoit X.E. |
| author_facet |
Desbiolles, Benoit X.E. Furlan, Gabriela Schwartzberg, Adam M. Ashby, Paul D. Ziegler, Dominik |
| author_role |
author |
| author2 |
Furlan, Gabriela Schwartzberg, Adam M. Ashby, Paul D. Ziegler, Dominik |
| author2_role |
author author author author |
| dc.subject.none.fl_str_mv |
AMPLITUDE CALIBRATION ATOMIC FORCE MICROSCOPY ELECTROSTATIC EXCITATION ENCASED CANTILEVERS LIQUID AFM |
| topic |
AMPLITUDE CALIBRATION ATOMIC FORCE MICROSCOPY ELECTROSTATIC EXCITATION ENCASED CANTILEVERS LIQUID AFM |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.10 https://purl.org/becyt/ford/2 |
| dc.description.none.fl_txt_mv |
Background: Encased cantilevers are novel force sensors that overcome major limitations of liquid scanning probe microscopy. By trapping air inside an encasement around the cantilever, they provide low damping and maintain high resonance frequencies for exquisitely low tip-sample interaction forces even when immersed in a viscous fluid. Quantitative measurements of stiffness, energy dissipation and tip-sample interactions using dynamic force sensors remain challenging due to spurious resonances of the system. Results: We demonstrate for the first time electrostatic actuation with a built-in electrode. Solely actuating the cantilever results in a frequency response free of spurious peaks. We analyze static, harmonic, and sub-harmonic actuation modes. Sub-harmonic mode results in stable amplitudes unaffected by potential offsets or fluctuations of the electrical surface potential. We present a simple plate capacitor model to describe the electrostatic actuation. The predicted deflection and amplitudes match experimental results within a few percent. Consequently, target amplitudes can be set by the drive voltage without requiring calibration of optical lever sensitivity. Furthermore, the excitation bandwidth outperforms most other excitation methods. Conclusion: Compatible with any instrument using optical beam deflection detection electrostatic actuation in encased cantilevers combines ultra-low force noise with clean and stable excitation well-suited for quantitative measurements in liquid, compatible with air, or vacuum environments. Fil: Desbiolles, Benoit X.E.. Lawrence Berkeley National Laboratory; Estados Unidos Fil: Furlan, Gabriela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Centro de Investigaciones en Bioquímica Clínica e Inmunología; Argentina. Lawrence Berkeley National Laboratory; Estados Unidos Fil: Schwartzberg, Adam M.. Lawrence Berkeley National Laboratory; Estados Unidos Fil: Ashby, Paul D.. Lawrence Berkeley National Laboratory; Estados Unidos Fil: Ziegler, Dominik. Scuba Probe Technologies LLC; Estados Unidos. Lawrence Berkeley National Laboratory; Estados Unidos |
| description |
Background: Encased cantilevers are novel force sensors that overcome major limitations of liquid scanning probe microscopy. By trapping air inside an encasement around the cantilever, they provide low damping and maintain high resonance frequencies for exquisitely low tip-sample interaction forces even when immersed in a viscous fluid. Quantitative measurements of stiffness, energy dissipation and tip-sample interactions using dynamic force sensors remain challenging due to spurious resonances of the system. Results: We demonstrate for the first time electrostatic actuation with a built-in electrode. Solely actuating the cantilever results in a frequency response free of spurious peaks. We analyze static, harmonic, and sub-harmonic actuation modes. Sub-harmonic mode results in stable amplitudes unaffected by potential offsets or fluctuations of the electrical surface potential. We present a simple plate capacitor model to describe the electrostatic actuation. The predicted deflection and amplitudes match experimental results within a few percent. Consequently, target amplitudes can be set by the drive voltage without requiring calibration of optical lever sensitivity. Furthermore, the excitation bandwidth outperforms most other excitation methods. Conclusion: Compatible with any instrument using optical beam deflection detection electrostatic actuation in encased cantilevers combines ultra-low force noise with clean and stable excitation well-suited for quantitative measurements in liquid, compatible with air, or vacuum environments. |
| publishDate |
2018 |
| dc.date.none.fl_str_mv |
2018-05 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/95853 Desbiolles, Benoit X.E.; Furlan, Gabriela; Schwartzberg, Adam M.; Ashby, Paul D.; Ziegler, Dominik; Electrostatically actuated encased cantilevers; Beilstein-Institut züur Forderung der Chemischen Wissenschaften; Beilstein Journal of Nanotechnology; 9; 1; 5-2018; 1381-1389 2190-4286 CONICET Digital CONICET |
| url |
http://hdl.handle.net/11336/95853 |
| identifier_str_mv |
Desbiolles, Benoit X.E.; Furlan, Gabriela; Schwartzberg, Adam M.; Ashby, Paul D.; Ziegler, Dominik; Electrostatically actuated encased cantilevers; Beilstein-Institut züur Forderung der Chemischen Wissenschaften; Beilstein Journal of Nanotechnology; 9; 1; 5-2018; 1381-1389 2190-4286 CONICET Digital CONICET |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.beilstein-journals.org/bjnano/articles/9/130 info:eu-repo/semantics/altIdentifier/doi/10.3762/bjnano.9.130 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
Beilstein-Institut züur Forderung der Chemischen Wissenschaften |
| publisher.none.fl_str_mv |
Beilstein-Institut züur Forderung der Chemischen Wissenschaften |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1846781592537661440 |
| score |
12.982451 |