Electrostatically actuated encased cantilevers

Autores
Desbiolles, Benoit X.E.; Furlan, Gabriela; Schwartzberg, Adam M.; Ashby, Paul D.; Ziegler, Dominik
Año de publicación
2018
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Background: Encased cantilevers are novel force sensors that overcome major limitations of liquid scanning probe microscopy. By trapping air inside an encasement around the cantilever, they provide low damping and maintain high resonance frequencies for exquisitely low tip-sample interaction forces even when immersed in a viscous fluid. Quantitative measurements of stiffness, energy dissipation and tip-sample interactions using dynamic force sensors remain challenging due to spurious resonances of the system. Results: We demonstrate for the first time electrostatic actuation with a built-in electrode. Solely actuating the cantilever results in a frequency response free of spurious peaks. We analyze static, harmonic, and sub-harmonic actuation modes. Sub-harmonic mode results in stable amplitudes unaffected by potential offsets or fluctuations of the electrical surface potential. We present a simple plate capacitor model to describe the electrostatic actuation. The predicted deflection and amplitudes match experimental results within a few percent. Consequently, target amplitudes can be set by the drive voltage without requiring calibration of optical lever sensitivity. Furthermore, the excitation bandwidth outperforms most other excitation methods. Conclusion: Compatible with any instrument using optical beam deflection detection electrostatic actuation in encased cantilevers combines ultra-low force noise with clean and stable excitation well-suited for quantitative measurements in liquid, compatible with air, or vacuum environments.
Fil: Desbiolles, Benoit X.E.. Lawrence Berkeley National Laboratory; Estados Unidos
Fil: Furlan, Gabriela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Centro de Investigaciones en Bioquímica Clínica e Inmunología; Argentina. Lawrence Berkeley National Laboratory; Estados Unidos
Fil: Schwartzberg, Adam M.. Lawrence Berkeley National Laboratory; Estados Unidos
Fil: Ashby, Paul D.. Lawrence Berkeley National Laboratory; Estados Unidos
Fil: Ziegler, Dominik. Scuba Probe Technologies LLC; Estados Unidos. Lawrence Berkeley National Laboratory; Estados Unidos
Materia
AMPLITUDE CALIBRATION
ATOMIC FORCE MICROSCOPY
ELECTROSTATIC EXCITATION
ENCASED CANTILEVERS
LIQUID AFM
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/95853

id CONICETDig_0e31e060da05eca6b4f79cced3fe7db6
oai_identifier_str oai:ri.conicet.gov.ar:11336/95853
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Electrostatically actuated encased cantileversDesbiolles, Benoit X.E.Furlan, GabrielaSchwartzberg, Adam M.Ashby, Paul D.Ziegler, DominikAMPLITUDE CALIBRATIONATOMIC FORCE MICROSCOPYELECTROSTATIC EXCITATIONENCASED CANTILEVERSLIQUID AFMhttps://purl.org/becyt/ford/2.10https://purl.org/becyt/ford/2Background: Encased cantilevers are novel force sensors that overcome major limitations of liquid scanning probe microscopy. By trapping air inside an encasement around the cantilever, they provide low damping and maintain high resonance frequencies for exquisitely low tip-sample interaction forces even when immersed in a viscous fluid. Quantitative measurements of stiffness, energy dissipation and tip-sample interactions using dynamic force sensors remain challenging due to spurious resonances of the system. Results: We demonstrate for the first time electrostatic actuation with a built-in electrode. Solely actuating the cantilever results in a frequency response free of spurious peaks. We analyze static, harmonic, and sub-harmonic actuation modes. Sub-harmonic mode results in stable amplitudes unaffected by potential offsets or fluctuations of the electrical surface potential. We present a simple plate capacitor model to describe the electrostatic actuation. The predicted deflection and amplitudes match experimental results within a few percent. Consequently, target amplitudes can be set by the drive voltage without requiring calibration of optical lever sensitivity. Furthermore, the excitation bandwidth outperforms most other excitation methods. Conclusion: Compatible with any instrument using optical beam deflection detection electrostatic actuation in encased cantilevers combines ultra-low force noise with clean and stable excitation well-suited for quantitative measurements in liquid, compatible with air, or vacuum environments.Fil: Desbiolles, Benoit X.E.. Lawrence Berkeley National Laboratory; Estados UnidosFil: Furlan, Gabriela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Centro de Investigaciones en Bioquímica Clínica e Inmunología; Argentina. Lawrence Berkeley National Laboratory; Estados UnidosFil: Schwartzberg, Adam M.. Lawrence Berkeley National Laboratory; Estados UnidosFil: Ashby, Paul D.. Lawrence Berkeley National Laboratory; Estados UnidosFil: Ziegler, Dominik. Scuba Probe Technologies LLC; Estados Unidos. Lawrence Berkeley National Laboratory; Estados UnidosBeilstein-Institut züur Forderung der Chemischen Wissenschaften2018-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/95853Desbiolles, Benoit X.E.; Furlan, Gabriela; Schwartzberg, Adam M.; Ashby, Paul D.; Ziegler, Dominik; Electrostatically actuated encased cantilevers; Beilstein-Institut züur Forderung der Chemischen Wissenschaften; Beilstein Journal of Nanotechnology; 9; 1; 5-2018; 1381-13892190-4286CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.beilstein-journals.org/bjnano/articles/9/130info:eu-repo/semantics/altIdentifier/doi/10.3762/bjnano.9.130info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-22T11:15:36Zoai:ri.conicet.gov.ar:11336/95853instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-22 11:15:36.797CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Electrostatically actuated encased cantilevers
title Electrostatically actuated encased cantilevers
spellingShingle Electrostatically actuated encased cantilevers
Desbiolles, Benoit X.E.
AMPLITUDE CALIBRATION
ATOMIC FORCE MICROSCOPY
ELECTROSTATIC EXCITATION
ENCASED CANTILEVERS
LIQUID AFM
title_short Electrostatically actuated encased cantilevers
title_full Electrostatically actuated encased cantilevers
title_fullStr Electrostatically actuated encased cantilevers
title_full_unstemmed Electrostatically actuated encased cantilevers
title_sort Electrostatically actuated encased cantilevers
dc.creator.none.fl_str_mv Desbiolles, Benoit X.E.
Furlan, Gabriela
Schwartzberg, Adam M.
Ashby, Paul D.
Ziegler, Dominik
author Desbiolles, Benoit X.E.
author_facet Desbiolles, Benoit X.E.
Furlan, Gabriela
Schwartzberg, Adam M.
Ashby, Paul D.
Ziegler, Dominik
author_role author
author2 Furlan, Gabriela
Schwartzberg, Adam M.
Ashby, Paul D.
Ziegler, Dominik
author2_role author
author
author
author
dc.subject.none.fl_str_mv AMPLITUDE CALIBRATION
ATOMIC FORCE MICROSCOPY
ELECTROSTATIC EXCITATION
ENCASED CANTILEVERS
LIQUID AFM
topic AMPLITUDE CALIBRATION
ATOMIC FORCE MICROSCOPY
ELECTROSTATIC EXCITATION
ENCASED CANTILEVERS
LIQUID AFM
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.10
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv Background: Encased cantilevers are novel force sensors that overcome major limitations of liquid scanning probe microscopy. By trapping air inside an encasement around the cantilever, they provide low damping and maintain high resonance frequencies for exquisitely low tip-sample interaction forces even when immersed in a viscous fluid. Quantitative measurements of stiffness, energy dissipation and tip-sample interactions using dynamic force sensors remain challenging due to spurious resonances of the system. Results: We demonstrate for the first time electrostatic actuation with a built-in electrode. Solely actuating the cantilever results in a frequency response free of spurious peaks. We analyze static, harmonic, and sub-harmonic actuation modes. Sub-harmonic mode results in stable amplitudes unaffected by potential offsets or fluctuations of the electrical surface potential. We present a simple plate capacitor model to describe the electrostatic actuation. The predicted deflection and amplitudes match experimental results within a few percent. Consequently, target amplitudes can be set by the drive voltage without requiring calibration of optical lever sensitivity. Furthermore, the excitation bandwidth outperforms most other excitation methods. Conclusion: Compatible with any instrument using optical beam deflection detection electrostatic actuation in encased cantilevers combines ultra-low force noise with clean and stable excitation well-suited for quantitative measurements in liquid, compatible with air, or vacuum environments.
Fil: Desbiolles, Benoit X.E.. Lawrence Berkeley National Laboratory; Estados Unidos
Fil: Furlan, Gabriela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Centro de Investigaciones en Bioquímica Clínica e Inmunología; Argentina. Lawrence Berkeley National Laboratory; Estados Unidos
Fil: Schwartzberg, Adam M.. Lawrence Berkeley National Laboratory; Estados Unidos
Fil: Ashby, Paul D.. Lawrence Berkeley National Laboratory; Estados Unidos
Fil: Ziegler, Dominik. Scuba Probe Technologies LLC; Estados Unidos. Lawrence Berkeley National Laboratory; Estados Unidos
description Background: Encased cantilevers are novel force sensors that overcome major limitations of liquid scanning probe microscopy. By trapping air inside an encasement around the cantilever, they provide low damping and maintain high resonance frequencies for exquisitely low tip-sample interaction forces even when immersed in a viscous fluid. Quantitative measurements of stiffness, energy dissipation and tip-sample interactions using dynamic force sensors remain challenging due to spurious resonances of the system. Results: We demonstrate for the first time electrostatic actuation with a built-in electrode. Solely actuating the cantilever results in a frequency response free of spurious peaks. We analyze static, harmonic, and sub-harmonic actuation modes. Sub-harmonic mode results in stable amplitudes unaffected by potential offsets or fluctuations of the electrical surface potential. We present a simple plate capacitor model to describe the electrostatic actuation. The predicted deflection and amplitudes match experimental results within a few percent. Consequently, target amplitudes can be set by the drive voltage without requiring calibration of optical lever sensitivity. Furthermore, the excitation bandwidth outperforms most other excitation methods. Conclusion: Compatible with any instrument using optical beam deflection detection electrostatic actuation in encased cantilevers combines ultra-low force noise with clean and stable excitation well-suited for quantitative measurements in liquid, compatible with air, or vacuum environments.
publishDate 2018
dc.date.none.fl_str_mv 2018-05
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/95853
Desbiolles, Benoit X.E.; Furlan, Gabriela; Schwartzberg, Adam M.; Ashby, Paul D.; Ziegler, Dominik; Electrostatically actuated encased cantilevers; Beilstein-Institut züur Forderung der Chemischen Wissenschaften; Beilstein Journal of Nanotechnology; 9; 1; 5-2018; 1381-1389
2190-4286
CONICET Digital
CONICET
url http://hdl.handle.net/11336/95853
identifier_str_mv Desbiolles, Benoit X.E.; Furlan, Gabriela; Schwartzberg, Adam M.; Ashby, Paul D.; Ziegler, Dominik; Electrostatically actuated encased cantilevers; Beilstein-Institut züur Forderung der Chemischen Wissenschaften; Beilstein Journal of Nanotechnology; 9; 1; 5-2018; 1381-1389
2190-4286
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://www.beilstein-journals.org/bjnano/articles/9/130
info:eu-repo/semantics/altIdentifier/doi/10.3762/bjnano.9.130
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Beilstein-Institut züur Forderung der Chemischen Wissenschaften
publisher.none.fl_str_mv Beilstein-Institut züur Forderung der Chemischen Wissenschaften
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846781592537661440
score 12.982451