Planetesimal fragmentation and giant planet formation

Autores
Guilera, Octavio Miguel; Elía, Gonzalo Carlos de; Brunini, Adrián; Santamaría, Pablo Javier
Año de publicación
2014
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Context. In the standard scenario of planet formation, terrestrial planets and the cores of the giant planets are formed by accretion of planetesimals. As planetary embryos grow, the planetesimal velocity dispersion increases because of gravitational excitations produced by embryos. The increasing relative velocities of the planetesimal cause them to fragment through mutual collisions. Aims. We study the role of planetesimal fragmentation on giant planet formation. We analyze how planetesimal fragmentation modifies the growth of giant planet cores for a wide range of planetesimal sizes and disk masses. Methods. We incorporated a model of planetesimal fragmentation into our model of in situ giant planet formation. We calculated the evolution of the solid surface density (planetesimals plus fragments) taking into account the accretion by the planet, migration, and fragmentation. Results. Incorporating planetesimal fragmentation significantly modifies the process of planetary formation. If most of the mass loss in planetesimal collisions is distributed in the smaller fragments, planetesimal fragmentation inhibits the growth of the embryo for initial planetesimals of radii smaller than 10 km. Only for initial planetesimals with a radius of 100 km, and disks larger than 0.06 M ⊙ , embryos achieve masses larger than the mass of Earth. However, even for these large planetesimals and massive disks, planetesimal fragmentation induces the quick formation of massive cores only if most of the mass loss in planetesimal collisions is distributed in the larger fragments. Conclusions. Planetesimal fragmentation seems to play an important role in giant planet formation. The way in which the mass loss in planetesimal collisions is distributed leads to different results, inhibiting or favoring the formation of massive cores.
Grupo de Ciencias Planetarias
Materia
Ciencias Astronómicas
Methods: numerical
Planets and satellites: formation
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-sa/4.0/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/85557

id SEDICI_c6c8137b3d616dc414644afdd35d168a
oai_identifier_str oai:sedici.unlp.edu.ar:10915/85557
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling Planetesimal fragmentation and giant planet formationGuilera, Octavio MiguelElía, Gonzalo Carlos deBrunini, AdriánSantamaría, Pablo JavierCiencias AstronómicasMethods: numericalPlanets and satellites: formationContext. In the standard scenario of planet formation, terrestrial planets and the cores of the giant planets are formed by accretion of planetesimals. As planetary embryos grow, the planetesimal velocity dispersion increases because of gravitational excitations produced by embryos. The increasing relative velocities of the planetesimal cause them to fragment through mutual collisions. Aims. We study the role of planetesimal fragmentation on giant planet formation. We analyze how planetesimal fragmentation modifies the growth of giant planet cores for a wide range of planetesimal sizes and disk masses. Methods. We incorporated a model of planetesimal fragmentation into our model of in situ giant planet formation. We calculated the evolution of the solid surface density (planetesimals plus fragments) taking into account the accretion by the planet, migration, and fragmentation. Results. Incorporating planetesimal fragmentation significantly modifies the process of planetary formation. If most of the mass loss in planetesimal collisions is distributed in the smaller fragments, planetesimal fragmentation inhibits the growth of the embryo for initial planetesimals of radii smaller than 10 km. Only for initial planetesimals with a radius of 100 km, and disks larger than 0.06 M ⊙ , embryos achieve masses larger than the mass of Earth. However, even for these large planetesimals and massive disks, planetesimal fragmentation induces the quick formation of massive cores only if most of the mass loss in planetesimal collisions is distributed in the larger fragments. Conclusions. Planetesimal fragmentation seems to play an important role in giant planet formation. The way in which the mass loss in planetesimal collisions is distributed leads to different results, inhibiting or favoring the formation of massive cores.Grupo de Ciencias Planetarias2014info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/85557enginfo:eu-repo/semantics/altIdentifier/issn/0004-6361info:eu-repo/semantics/altIdentifier/doi/10.1051/0004-6361/201322061info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T11:16:24Zoai:sedici.unlp.edu.ar:10915/85557Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 11:16:25.15SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv Planetesimal fragmentation and giant planet formation
title Planetesimal fragmentation and giant planet formation
spellingShingle Planetesimal fragmentation and giant planet formation
Guilera, Octavio Miguel
Ciencias Astronómicas
Methods: numerical
Planets and satellites: formation
title_short Planetesimal fragmentation and giant planet formation
title_full Planetesimal fragmentation and giant planet formation
title_fullStr Planetesimal fragmentation and giant planet formation
title_full_unstemmed Planetesimal fragmentation and giant planet formation
title_sort Planetesimal fragmentation and giant planet formation
dc.creator.none.fl_str_mv Guilera, Octavio Miguel
Elía, Gonzalo Carlos de
Brunini, Adrián
Santamaría, Pablo Javier
author Guilera, Octavio Miguel
author_facet Guilera, Octavio Miguel
Elía, Gonzalo Carlos de
Brunini, Adrián
Santamaría, Pablo Javier
author_role author
author2 Elía, Gonzalo Carlos de
Brunini, Adrián
Santamaría, Pablo Javier
author2_role author
author
author
dc.subject.none.fl_str_mv Ciencias Astronómicas
Methods: numerical
Planets and satellites: formation
topic Ciencias Astronómicas
Methods: numerical
Planets and satellites: formation
dc.description.none.fl_txt_mv Context. In the standard scenario of planet formation, terrestrial planets and the cores of the giant planets are formed by accretion of planetesimals. As planetary embryos grow, the planetesimal velocity dispersion increases because of gravitational excitations produced by embryos. The increasing relative velocities of the planetesimal cause them to fragment through mutual collisions. Aims. We study the role of planetesimal fragmentation on giant planet formation. We analyze how planetesimal fragmentation modifies the growth of giant planet cores for a wide range of planetesimal sizes and disk masses. Methods. We incorporated a model of planetesimal fragmentation into our model of in situ giant planet formation. We calculated the evolution of the solid surface density (planetesimals plus fragments) taking into account the accretion by the planet, migration, and fragmentation. Results. Incorporating planetesimal fragmentation significantly modifies the process of planetary formation. If most of the mass loss in planetesimal collisions is distributed in the smaller fragments, planetesimal fragmentation inhibits the growth of the embryo for initial planetesimals of radii smaller than 10 km. Only for initial planetesimals with a radius of 100 km, and disks larger than 0.06 M ⊙ , embryos achieve masses larger than the mass of Earth. However, even for these large planetesimals and massive disks, planetesimal fragmentation induces the quick formation of massive cores only if most of the mass loss in planetesimal collisions is distributed in the larger fragments. Conclusions. Planetesimal fragmentation seems to play an important role in giant planet formation. The way in which the mass loss in planetesimal collisions is distributed leads to different results, inhibiting or favoring the formation of massive cores.
Grupo de Ciencias Planetarias
description Context. In the standard scenario of planet formation, terrestrial planets and the cores of the giant planets are formed by accretion of planetesimals. As planetary embryos grow, the planetesimal velocity dispersion increases because of gravitational excitations produced by embryos. The increasing relative velocities of the planetesimal cause them to fragment through mutual collisions. Aims. We study the role of planetesimal fragmentation on giant planet formation. We analyze how planetesimal fragmentation modifies the growth of giant planet cores for a wide range of planetesimal sizes and disk masses. Methods. We incorporated a model of planetesimal fragmentation into our model of in situ giant planet formation. We calculated the evolution of the solid surface density (planetesimals plus fragments) taking into account the accretion by the planet, migration, and fragmentation. Results. Incorporating planetesimal fragmentation significantly modifies the process of planetary formation. If most of the mass loss in planetesimal collisions is distributed in the smaller fragments, planetesimal fragmentation inhibits the growth of the embryo for initial planetesimals of radii smaller than 10 km. Only for initial planetesimals with a radius of 100 km, and disks larger than 0.06 M ⊙ , embryos achieve masses larger than the mass of Earth. However, even for these large planetesimals and massive disks, planetesimal fragmentation induces the quick formation of massive cores only if most of the mass loss in planetesimal collisions is distributed in the larger fragments. Conclusions. Planetesimal fragmentation seems to play an important role in giant planet formation. The way in which the mass loss in planetesimal collisions is distributed leads to different results, inhibiting or favoring the formation of massive cores.
publishDate 2014
dc.date.none.fl_str_mv 2014
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
Articulo
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/85557
url http://sedici.unlp.edu.ar/handle/10915/85557
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/issn/0004-6361
info:eu-repo/semantics/altIdentifier/doi/10.1051/0004-6361/201322061
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1844616036580589568
score 13.070432