A nonlinear algorithm for traffic estimation with state constraints
- Autores
- Risso, Mariano Angel; Bhouri, Neila; Lotito, Pablo Andres; Rubiales, Aldo Jose
- Año de publicación
- 2018
- Idioma
- inglés
- Tipo de recurso
- documento de conferencia
- Estado
- versión publicada
- Descripción
- We present a real-time traffic state estimation algorithm for motorways. Natural constraints on the variables, like practical bounds on densities and velocities, are incorporated in the estimation process aiming to obtain better estimation results.The dynamic equation for the evolution of the traffic is defined by a second order macroscopic model which computes the density, the flow and the mean speed according to several nonlinear equations, but nothing avoids the results being out of those practical bounds. Different extensions of the Kalman method were already applied to this problem, but none of them consider natural constraints in the variables. On the other hand, general filter methods have been designed to cope with a constrained state. In order to incorporate the natural constraints of the traffic model, we adapt one of those methods based on the Unscented Kalman Filter. To validate the approach, many simulation cases over a freeway section were made using a microscopic simulation tool and comparing the Extended Kalman Approach with the proposed one.
Fil: Risso, Mariano Angel. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Grupo de Plasmas Densos Magnetizados. Provincia de Buenos Aires. Gobernación. Comision de Investigaciones Científicas. Grupo de Plasmas Densos Magnetizados; Argentina
Fil: Bhouri, Neila. Université Paris Est; Francia
Fil: Lotito, Pablo Andres. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Grupo de Plasmas Densos Magnetizados. Provincia de Buenos Aires. Gobernación. Comision de Investigaciones Científicas. Grupo de Plasmas Densos Magnetizados; Argentina
Fil: Rubiales, Aldo Jose. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Grupo de Plasmas Densos Magnetizados. Provincia de Buenos Aires. Gobernación. Comision de Investigaciones Científicas. Grupo de Plasmas Densos Magnetizados; Argentina
20th EURO Working Group on Transportation Meeting (EWGT 2017)
Budapest
Hungría
Budapest University of Technology and Economics - Materia
-
ESTIMACION
ESTADO
TRAFICO
KALMAN - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/137242
Ver los metadatos del registro completo
id |
CONICETDig_0d91096e0d1902b8b4e15c45460ca4bc |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/137242 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
A nonlinear algorithm for traffic estimation with state constraintsRisso, Mariano AngelBhouri, NeilaLotito, Pablo AndresRubiales, Aldo JoseESTIMACIONESTADOTRAFICOKALMANhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We present a real-time traffic state estimation algorithm for motorways. Natural constraints on the variables, like practical bounds on densities and velocities, are incorporated in the estimation process aiming to obtain better estimation results.The dynamic equation for the evolution of the traffic is defined by a second order macroscopic model which computes the density, the flow and the mean speed according to several nonlinear equations, but nothing avoids the results being out of those practical bounds. Different extensions of the Kalman method were already applied to this problem, but none of them consider natural constraints in the variables. On the other hand, general filter methods have been designed to cope with a constrained state. In order to incorporate the natural constraints of the traffic model, we adapt one of those methods based on the Unscented Kalman Filter. To validate the approach, many simulation cases over a freeway section were made using a microscopic simulation tool and comparing the Extended Kalman Approach with the proposed one.Fil: Risso, Mariano Angel. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Grupo de Plasmas Densos Magnetizados. Provincia de Buenos Aires. Gobernación. Comision de Investigaciones Científicas. Grupo de Plasmas Densos Magnetizados; ArgentinaFil: Bhouri, Neila. Université Paris Est; FranciaFil: Lotito, Pablo Andres. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Grupo de Plasmas Densos Magnetizados. Provincia de Buenos Aires. Gobernación. Comision de Investigaciones Científicas. Grupo de Plasmas Densos Magnetizados; ArgentinaFil: Rubiales, Aldo Jose. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Grupo de Plasmas Densos Magnetizados. Provincia de Buenos Aires. Gobernación. Comision de Investigaciones Científicas. Grupo de Plasmas Densos Magnetizados; Argentina20th EURO Working Group on Transportation Meeting (EWGT 2017)BudapestHungríaBudapest University of Technology and EconomicsElsevierEsztergár Kiss. DomokosMátrai, TamásTóth, JánosVarga, István2018info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObjectOtroJournalhttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/137242A nonlinear algorithm for traffic estimation with state constraints; 20th EURO Working Group on Transportation Meeting (EWGT 2017); Budapest; Hungría; 2017; 600-6082352-1465CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S2352146517310256info:eu-repo/semantics/altIdentifier/doi/10.1016/j.trpro.2017.12.128Internacionalinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:57:45Zoai:ri.conicet.gov.ar:11336/137242instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:57:45.977CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
A nonlinear algorithm for traffic estimation with state constraints |
title |
A nonlinear algorithm for traffic estimation with state constraints |
spellingShingle |
A nonlinear algorithm for traffic estimation with state constraints Risso, Mariano Angel ESTIMACION ESTADO TRAFICO KALMAN |
title_short |
A nonlinear algorithm for traffic estimation with state constraints |
title_full |
A nonlinear algorithm for traffic estimation with state constraints |
title_fullStr |
A nonlinear algorithm for traffic estimation with state constraints |
title_full_unstemmed |
A nonlinear algorithm for traffic estimation with state constraints |
title_sort |
A nonlinear algorithm for traffic estimation with state constraints |
dc.creator.none.fl_str_mv |
Risso, Mariano Angel Bhouri, Neila Lotito, Pablo Andres Rubiales, Aldo Jose |
author |
Risso, Mariano Angel |
author_facet |
Risso, Mariano Angel Bhouri, Neila Lotito, Pablo Andres Rubiales, Aldo Jose |
author_role |
author |
author2 |
Bhouri, Neila Lotito, Pablo Andres Rubiales, Aldo Jose |
author2_role |
author author author |
dc.contributor.none.fl_str_mv |
Esztergár Kiss. Domokos Mátrai, Tamás Tóth, János Varga, István |
dc.subject.none.fl_str_mv |
ESTIMACION ESTADO TRAFICO KALMAN |
topic |
ESTIMACION ESTADO TRAFICO KALMAN |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We present a real-time traffic state estimation algorithm for motorways. Natural constraints on the variables, like practical bounds on densities and velocities, are incorporated in the estimation process aiming to obtain better estimation results.The dynamic equation for the evolution of the traffic is defined by a second order macroscopic model which computes the density, the flow and the mean speed according to several nonlinear equations, but nothing avoids the results being out of those practical bounds. Different extensions of the Kalman method were already applied to this problem, but none of them consider natural constraints in the variables. On the other hand, general filter methods have been designed to cope with a constrained state. In order to incorporate the natural constraints of the traffic model, we adapt one of those methods based on the Unscented Kalman Filter. To validate the approach, many simulation cases over a freeway section were made using a microscopic simulation tool and comparing the Extended Kalman Approach with the proposed one. Fil: Risso, Mariano Angel. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Grupo de Plasmas Densos Magnetizados. Provincia de Buenos Aires. Gobernación. Comision de Investigaciones Científicas. Grupo de Plasmas Densos Magnetizados; Argentina Fil: Bhouri, Neila. Université Paris Est; Francia Fil: Lotito, Pablo Andres. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Grupo de Plasmas Densos Magnetizados. Provincia de Buenos Aires. Gobernación. Comision de Investigaciones Científicas. Grupo de Plasmas Densos Magnetizados; Argentina Fil: Rubiales, Aldo Jose. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Grupo de Plasmas Densos Magnetizados. Provincia de Buenos Aires. Gobernación. Comision de Investigaciones Científicas. Grupo de Plasmas Densos Magnetizados; Argentina 20th EURO Working Group on Transportation Meeting (EWGT 2017) Budapest Hungría Budapest University of Technology and Economics |
description |
We present a real-time traffic state estimation algorithm for motorways. Natural constraints on the variables, like practical bounds on densities and velocities, are incorporated in the estimation process aiming to obtain better estimation results.The dynamic equation for the evolution of the traffic is defined by a second order macroscopic model which computes the density, the flow and the mean speed according to several nonlinear equations, but nothing avoids the results being out of those practical bounds. Different extensions of the Kalman method were already applied to this problem, but none of them consider natural constraints in the variables. On the other hand, general filter methods have been designed to cope with a constrained state. In order to incorporate the natural constraints of the traffic model, we adapt one of those methods based on the Unscented Kalman Filter. To validate the approach, many simulation cases over a freeway section were made using a microscopic simulation tool and comparing the Extended Kalman Approach with the proposed one. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/publishedVersion info:eu-repo/semantics/conferenceObject Otro Journal http://purl.org/coar/resource_type/c_5794 info:ar-repo/semantics/documentoDeConferencia |
status_str |
publishedVersion |
format |
conferenceObject |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/137242 A nonlinear algorithm for traffic estimation with state constraints; 20th EURO Working Group on Transportation Meeting (EWGT 2017); Budapest; Hungría; 2017; 600-608 2352-1465 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/137242 |
identifier_str_mv |
A nonlinear algorithm for traffic estimation with state constraints; 20th EURO Working Group on Transportation Meeting (EWGT 2017); Budapest; Hungría; 2017; 600-608 2352-1465 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S2352146517310256 info:eu-repo/semantics/altIdentifier/doi/10.1016/j.trpro.2017.12.128 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.coverage.none.fl_str_mv |
Internacional |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269483091099648 |
score |
13.13397 |