Impact of implementing the Meyer-Neldel behavior of carrier emission pre-factors in solar cell and optical detector modeling
- Autores
- Rubinelli, Francisco Alberto; Ramirez Jimenez, Helena
- Año de publicación
- 2015
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The Meyer-Neldel behavior reported for the emission probabilities of electrons and holes was included in our code, replacing the gap state capture cross sections of the Shockley-Read-Hall formalisms with capture cross sections containing an exponential function of the trap energy depth. The Meyer-Neldel energies for electrons and holes are the slopes of these exponentials. Our results indicate that emission probabilities of neutral states no deeper than approximately 0.45 eV and 0.37 eV from the conduction and valence band edges, respectively, can show a Meyer-Neldel behavior only, while on the other hand, its implementation in deeper gap states makes the replication of experimental J-V curves of p-i-n solar cells and detectors impossible. The Meyer-Neldel behavior can be included in all neutral capture cross sections of acceptor-like tail states without affecting the J-V characteristics, while it cannot be included in all capture cross sections of neutral donor-like tail states and/or defect states without predicting device performances below the experimental figures, that become even lower when it is also included in charged capture cross sections. The implementation of the anti Meyer-Neldel behavior at tail states gives rise to slightly better and reasonable device performances.
Fil: Rubinelli, Francisco Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química (i); Argentina
Fil: Ramirez Jimenez, Helena. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Desarrollo Tecnológico Para la Industria Química (i); Argentina - Materia
-
Amorphous Silcon Thin Fiolm Devices
Meyer-Neldel Rule
Solar Cells
Optical Detectors - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/9920
Ver los metadatos del registro completo
id |
CONICETDig_0b428a53298a023212a390bd3a2e6bb5 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/9920 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Impact of implementing the Meyer-Neldel behavior of carrier emission pre-factors in solar cell and optical detector modelingRubinelli, Francisco AlbertoRamirez Jimenez, HelenaAmorphous Silcon Thin Fiolm DevicesMeyer-Neldel RuleSolar CellsOptical Detectorshttps://purl.org/becyt/ford/2.5https://purl.org/becyt/ford/2https://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1The Meyer-Neldel behavior reported for the emission probabilities of electrons and holes was included in our code, replacing the gap state capture cross sections of the Shockley-Read-Hall formalisms with capture cross sections containing an exponential function of the trap energy depth. The Meyer-Neldel energies for electrons and holes are the slopes of these exponentials. Our results indicate that emission probabilities of neutral states no deeper than approximately 0.45 eV and 0.37 eV from the conduction and valence band edges, respectively, can show a Meyer-Neldel behavior only, while on the other hand, its implementation in deeper gap states makes the replication of experimental J-V curves of p-i-n solar cells and detectors impossible. The Meyer-Neldel behavior can be included in all neutral capture cross sections of acceptor-like tail states without affecting the J-V characteristics, while it cannot be included in all capture cross sections of neutral donor-like tail states and/or defect states without predicting device performances below the experimental figures, that become even lower when it is also included in charged capture cross sections. The implementation of the anti Meyer-Neldel behavior at tail states gives rise to slightly better and reasonable device performances.Fil: Rubinelli, Francisco Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química (i); ArgentinaFil: Ramirez Jimenez, Helena. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Desarrollo Tecnológico Para la Industria Química (i); ArgentinaAmerican Institute Of Physics2015-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/9920Rubinelli, Francisco Alberto; Ramirez Jimenez, Helena; Impact of implementing the Meyer-Neldel behavior of carrier emission pre-factors in solar cell and optical detector modeling; American Institute Of Physics; Journal Of Applied Physics; 117; 10; 3-2015; 1045131-104513110021-8979enginfo:eu-repo/semantics/altIdentifier/doi/10.1063/1.4914038info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:33:43Zoai:ri.conicet.gov.ar:11336/9920instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:33:43.424CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Impact of implementing the Meyer-Neldel behavior of carrier emission pre-factors in solar cell and optical detector modeling |
title |
Impact of implementing the Meyer-Neldel behavior of carrier emission pre-factors in solar cell and optical detector modeling |
spellingShingle |
Impact of implementing the Meyer-Neldel behavior of carrier emission pre-factors in solar cell and optical detector modeling Rubinelli, Francisco Alberto Amorphous Silcon Thin Fiolm Devices Meyer-Neldel Rule Solar Cells Optical Detectors |
title_short |
Impact of implementing the Meyer-Neldel behavior of carrier emission pre-factors in solar cell and optical detector modeling |
title_full |
Impact of implementing the Meyer-Neldel behavior of carrier emission pre-factors in solar cell and optical detector modeling |
title_fullStr |
Impact of implementing the Meyer-Neldel behavior of carrier emission pre-factors in solar cell and optical detector modeling |
title_full_unstemmed |
Impact of implementing the Meyer-Neldel behavior of carrier emission pre-factors in solar cell and optical detector modeling |
title_sort |
Impact of implementing the Meyer-Neldel behavior of carrier emission pre-factors in solar cell and optical detector modeling |
dc.creator.none.fl_str_mv |
Rubinelli, Francisco Alberto Ramirez Jimenez, Helena |
author |
Rubinelli, Francisco Alberto |
author_facet |
Rubinelli, Francisco Alberto Ramirez Jimenez, Helena |
author_role |
author |
author2 |
Ramirez Jimenez, Helena |
author2_role |
author |
dc.subject.none.fl_str_mv |
Amorphous Silcon Thin Fiolm Devices Meyer-Neldel Rule Solar Cells Optical Detectors |
topic |
Amorphous Silcon Thin Fiolm Devices Meyer-Neldel Rule Solar Cells Optical Detectors |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.5 https://purl.org/becyt/ford/2 https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
The Meyer-Neldel behavior reported for the emission probabilities of electrons and holes was included in our code, replacing the gap state capture cross sections of the Shockley-Read-Hall formalisms with capture cross sections containing an exponential function of the trap energy depth. The Meyer-Neldel energies for electrons and holes are the slopes of these exponentials. Our results indicate that emission probabilities of neutral states no deeper than approximately 0.45 eV and 0.37 eV from the conduction and valence band edges, respectively, can show a Meyer-Neldel behavior only, while on the other hand, its implementation in deeper gap states makes the replication of experimental J-V curves of p-i-n solar cells and detectors impossible. The Meyer-Neldel behavior can be included in all neutral capture cross sections of acceptor-like tail states without affecting the J-V characteristics, while it cannot be included in all capture cross sections of neutral donor-like tail states and/or defect states without predicting device performances below the experimental figures, that become even lower when it is also included in charged capture cross sections. The implementation of the anti Meyer-Neldel behavior at tail states gives rise to slightly better and reasonable device performances. Fil: Rubinelli, Francisco Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química (i); Argentina Fil: Ramirez Jimenez, Helena. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Desarrollo Tecnológico Para la Industria Química (i); Argentina |
description |
The Meyer-Neldel behavior reported for the emission probabilities of electrons and holes was included in our code, replacing the gap state capture cross sections of the Shockley-Read-Hall formalisms with capture cross sections containing an exponential function of the trap energy depth. The Meyer-Neldel energies for electrons and holes are the slopes of these exponentials. Our results indicate that emission probabilities of neutral states no deeper than approximately 0.45 eV and 0.37 eV from the conduction and valence band edges, respectively, can show a Meyer-Neldel behavior only, while on the other hand, its implementation in deeper gap states makes the replication of experimental J-V curves of p-i-n solar cells and detectors impossible. The Meyer-Neldel behavior can be included in all neutral capture cross sections of acceptor-like tail states without affecting the J-V characteristics, while it cannot be included in all capture cross sections of neutral donor-like tail states and/or defect states without predicting device performances below the experimental figures, that become even lower when it is also included in charged capture cross sections. The implementation of the anti Meyer-Neldel behavior at tail states gives rise to slightly better and reasonable device performances. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015-03 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/9920 Rubinelli, Francisco Alberto; Ramirez Jimenez, Helena; Impact of implementing the Meyer-Neldel behavior of carrier emission pre-factors in solar cell and optical detector modeling; American Institute Of Physics; Journal Of Applied Physics; 117; 10; 3-2015; 1045131-10451311 0021-8979 |
url |
http://hdl.handle.net/11336/9920 |
identifier_str_mv |
Rubinelli, Francisco Alberto; Ramirez Jimenez, Helena; Impact of implementing the Meyer-Neldel behavior of carrier emission pre-factors in solar cell and optical detector modeling; American Institute Of Physics; Journal Of Applied Physics; 117; 10; 3-2015; 1045131-10451311 0021-8979 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1063/1.4914038 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
American Institute Of Physics |
publisher.none.fl_str_mv |
American Institute Of Physics |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614352745791488 |
score |
13.070432 |