Latent dirichlet allocation model for world trade analysis

Autores
Kozlowski, Diego; Semeshenko, Viktoriya; Molinari, Andrea
Año de publicación
2021
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
International trade is one of the classic areas of study in economics. Its empirical analysis is a complex problem, given the amount of products, countries and years. Nowadays, given the availability of data, the tools used for the analysis can be complemented and enriched with new methodologies and techniques that go beyond the traditional approach. This new possibility opens a research gap, as new, data-driven, ways of understanding international trade, can help our understanding of the underlying phenomena. The present paper shows the application of the Latent Dirichlet allocation model, a well known technique in the area of Natural Language Processing, to search for latent dimensions in the product space of international trade, and their distribution across countries over time. We apply this technique to a dataset of countries exports of goods from 1962 to 2016. The results show that this technique can encode the main specialisation patterns of international trade. On the countrylevel analysis, the findings show the changes in the specialisation patterns of countries over time. As traditional international trade analysis demands expert knowledge on a multiplicity of indicators, the possibility of encoding multiple known phenomena under a unique indicator is a powerful complement for traditional tools, as it allows top-down data-driven studies.
Fil: Kozlowski, Diego. University of Luxembourg; Luxemburgo
Fil: Semeshenko, Viktoriya. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Interdisciplinario de Economía Política de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Económicas. Instituto Interdisciplinario de Economía Política de Buenos Aires; Argentina
Fil: Molinari, Andrea. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Interdisciplinario de Economía Política de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Económicas. Instituto Interdisciplinario de Economía Política de Buenos Aires; Argentina
Materia
Latent Dirichlet allocation
Trade data
NLP
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/138822

id CONICETDig_0a06154d7c9cf6700fcd42cce0a797ec
oai_identifier_str oai:ri.conicet.gov.ar:11336/138822
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Latent dirichlet allocation model for world trade analysisKozlowski, DiegoSemeshenko, ViktoriyaMolinari, AndreaLatent Dirichlet allocationTrade dataNLPhttps://purl.org/becyt/ford/5.2https://purl.org/becyt/ford/5International trade is one of the classic areas of study in economics. Its empirical analysis is a complex problem, given the amount of products, countries and years. Nowadays, given the availability of data, the tools used for the analysis can be complemented and enriched with new methodologies and techniques that go beyond the traditional approach. This new possibility opens a research gap, as new, data-driven, ways of understanding international trade, can help our understanding of the underlying phenomena. The present paper shows the application of the Latent Dirichlet allocation model, a well known technique in the area of Natural Language Processing, to search for latent dimensions in the product space of international trade, and their distribution across countries over time. We apply this technique to a dataset of countries exports of goods from 1962 to 2016. The results show that this technique can encode the main specialisation patterns of international trade. On the countrylevel analysis, the findings show the changes in the specialisation patterns of countries over time. As traditional international trade analysis demands expert knowledge on a multiplicity of indicators, the possibility of encoding multiple known phenomena under a unique indicator is a powerful complement for traditional tools, as it allows top-down data-driven studies.Fil: Kozlowski, Diego. University of Luxembourg; LuxemburgoFil: Semeshenko, Viktoriya. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Interdisciplinario de Economía Política de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Económicas. Instituto Interdisciplinario de Economía Política de Buenos Aires; ArgentinaFil: Molinari, Andrea. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Interdisciplinario de Economía Política de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Económicas. Instituto Interdisciplinario de Economía Política de Buenos Aires; ArgentinaPublic Library of Science2021-02-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/138822Kozlowski, Diego; Semeshenko, Viktoriya; Molinari, Andrea; Latent dirichlet allocation model for world trade analysis; Public Library of Science; Plos One; 16; 2; 4-2-2021; 1-181932-6203CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1371/journal.pone.0245393info:eu-repo/semantics/altIdentifier/url/https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0245393info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:44:30Zoai:ri.conicet.gov.ar:11336/138822instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:44:30.405CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Latent dirichlet allocation model for world trade analysis
title Latent dirichlet allocation model for world trade analysis
spellingShingle Latent dirichlet allocation model for world trade analysis
Kozlowski, Diego
Latent Dirichlet allocation
Trade data
NLP
title_short Latent dirichlet allocation model for world trade analysis
title_full Latent dirichlet allocation model for world trade analysis
title_fullStr Latent dirichlet allocation model for world trade analysis
title_full_unstemmed Latent dirichlet allocation model for world trade analysis
title_sort Latent dirichlet allocation model for world trade analysis
dc.creator.none.fl_str_mv Kozlowski, Diego
Semeshenko, Viktoriya
Molinari, Andrea
author Kozlowski, Diego
author_facet Kozlowski, Diego
Semeshenko, Viktoriya
Molinari, Andrea
author_role author
author2 Semeshenko, Viktoriya
Molinari, Andrea
author2_role author
author
dc.subject.none.fl_str_mv Latent Dirichlet allocation
Trade data
NLP
topic Latent Dirichlet allocation
Trade data
NLP
purl_subject.fl_str_mv https://purl.org/becyt/ford/5.2
https://purl.org/becyt/ford/5
dc.description.none.fl_txt_mv International trade is one of the classic areas of study in economics. Its empirical analysis is a complex problem, given the amount of products, countries and years. Nowadays, given the availability of data, the tools used for the analysis can be complemented and enriched with new methodologies and techniques that go beyond the traditional approach. This new possibility opens a research gap, as new, data-driven, ways of understanding international trade, can help our understanding of the underlying phenomena. The present paper shows the application of the Latent Dirichlet allocation model, a well known technique in the area of Natural Language Processing, to search for latent dimensions in the product space of international trade, and their distribution across countries over time. We apply this technique to a dataset of countries exports of goods from 1962 to 2016. The results show that this technique can encode the main specialisation patterns of international trade. On the countrylevel analysis, the findings show the changes in the specialisation patterns of countries over time. As traditional international trade analysis demands expert knowledge on a multiplicity of indicators, the possibility of encoding multiple known phenomena under a unique indicator is a powerful complement for traditional tools, as it allows top-down data-driven studies.
Fil: Kozlowski, Diego. University of Luxembourg; Luxemburgo
Fil: Semeshenko, Viktoriya. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Interdisciplinario de Economía Política de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Económicas. Instituto Interdisciplinario de Economía Política de Buenos Aires; Argentina
Fil: Molinari, Andrea. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Interdisciplinario de Economía Política de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Económicas. Instituto Interdisciplinario de Economía Política de Buenos Aires; Argentina
description International trade is one of the classic areas of study in economics. Its empirical analysis is a complex problem, given the amount of products, countries and years. Nowadays, given the availability of data, the tools used for the analysis can be complemented and enriched with new methodologies and techniques that go beyond the traditional approach. This new possibility opens a research gap, as new, data-driven, ways of understanding international trade, can help our understanding of the underlying phenomena. The present paper shows the application of the Latent Dirichlet allocation model, a well known technique in the area of Natural Language Processing, to search for latent dimensions in the product space of international trade, and their distribution across countries over time. We apply this technique to a dataset of countries exports of goods from 1962 to 2016. The results show that this technique can encode the main specialisation patterns of international trade. On the countrylevel analysis, the findings show the changes in the specialisation patterns of countries over time. As traditional international trade analysis demands expert knowledge on a multiplicity of indicators, the possibility of encoding multiple known phenomena under a unique indicator is a powerful complement for traditional tools, as it allows top-down data-driven studies.
publishDate 2021
dc.date.none.fl_str_mv 2021-02-04
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/138822
Kozlowski, Diego; Semeshenko, Viktoriya; Molinari, Andrea; Latent dirichlet allocation model for world trade analysis; Public Library of Science; Plos One; 16; 2; 4-2-2021; 1-18
1932-6203
CONICET Digital
CONICET
url http://hdl.handle.net/11336/138822
identifier_str_mv Kozlowski, Diego; Semeshenko, Viktoriya; Molinari, Andrea; Latent dirichlet allocation model for world trade analysis; Public Library of Science; Plos One; 16; 2; 4-2-2021; 1-18
1932-6203
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1371/journal.pone.0245393
info:eu-repo/semantics/altIdentifier/url/https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0245393
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Public Library of Science
publisher.none.fl_str_mv Public Library of Science
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614482879315968
score 13.070432