Variational Principle for a Schrödinger Equation with Non-Hermitian Hamiltonian and Position-Dependent Mass
- Autores
- Plastino, Angel Ricardo; Vignat, C.; Plastino, A.
- Año de publicación
- 2015
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- A classical field theory for a Schrödinger equation with a non-Hermitian Hamiltonian describing a particle with position-dependent mass has been recently advanced by Nobre and Rego-Monteiro (NR) [Phys. Rev. A 88 (2013) 032105]. This field theory is based on a variational principle involving the wavefunction Ψ(x,t) and an auxiliary field Φ(x,t). It is here shown that the relation between the dynamics of the auxiliary field φ(x,i) and that of the original wavefunction Ψ(x,t) is deeper than suggested by the NR approach. Indeed, we formulate a variational principle for the aforementioned Schrödinger equation which is based solely on the wavefunction Ψ(x,t). A continuity equation for an appropriately defined probability density, and the concomitant preservation of the norm, follows from this variational principle via Noether´s theorem. Moreover, the norm-conservation law obtained by NR is reinterpreted as the preservation of the inner product between pairs of solutions of the variable mass Schrödinger equation.
Fil: Plastino, Angel Ricardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro de Investigaciones y Transferencia del Noroeste de la Provincia de Buenos Aires. Universidad Nacional del Noroeste de la Provincia de Buenos Aires. Centro de Investigaciones y Transferencia del Noroeste de la Provincia de Buenos Aires; Argentina
Fil: Vignat, C.. University of Tulane; Estados Unidos. Universite D'Orsay; Francia
Fil: Plastino, A.. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - la Plata. Instituto de Física la Plata. Universidad Nacional de la Plata. Facultad de Ciencias Exactas. Instituto de Física la Plata; Argentina - Materia
-
Classical Field Theory
Non-Hermitian Hamiltonian
Position-Dependent Mass
Schrödinger Equation - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/19215
Ver los metadatos del registro completo
id |
CONICETDig_09ccd2027a0cd5709232e9a382544f7d |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/19215 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Variational Principle for a Schrödinger Equation with Non-Hermitian Hamiltonian and Position-Dependent MassPlastino, Angel RicardoVignat, C.Plastino, A.Classical Field TheoryNon-Hermitian HamiltonianPosition-Dependent MassSchrödinger Equationhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1A classical field theory for a Schrödinger equation with a non-Hermitian Hamiltonian describing a particle with position-dependent mass has been recently advanced by Nobre and Rego-Monteiro (NR) [Phys. Rev. A 88 (2013) 032105]. This field theory is based on a variational principle involving the wavefunction Ψ(x,t) and an auxiliary field Φ(x,t). It is here shown that the relation between the dynamics of the auxiliary field φ(x,i) and that of the original wavefunction Ψ(x,t) is deeper than suggested by the NR approach. Indeed, we formulate a variational principle for the aforementioned Schrödinger equation which is based solely on the wavefunction Ψ(x,t). A continuity equation for an appropriately defined probability density, and the concomitant preservation of the norm, follows from this variational principle via Noether´s theorem. Moreover, the norm-conservation law obtained by NR is reinterpreted as the preservation of the inner product between pairs of solutions of the variable mass Schrödinger equation.Fil: Plastino, Angel Ricardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro de Investigaciones y Transferencia del Noroeste de la Provincia de Buenos Aires. Universidad Nacional del Noroeste de la Provincia de Buenos Aires. Centro de Investigaciones y Transferencia del Noroeste de la Provincia de Buenos Aires; ArgentinaFil: Vignat, C.. University of Tulane; Estados Unidos. Universite D'Orsay; FranciaFil: Plastino, A.. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - la Plata. Instituto de Física la Plata. Universidad Nacional de la Plata. Facultad de Ciencias Exactas. Instituto de Física la Plata; ArgentinaIop Publishing2015-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/19215Plastino, Angel Ricardo; Vignat, C.; Plastino, A.; Variational Principle for a Schrödinger Equation with Non-Hermitian Hamiltonian and Position-Dependent Mass; Iop Publishing; Communications In Theoretical Physics; 63; 3; 3-2015; 275-2780253-6102CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://iopscience.iop.org/article/10.1088/0253-6102/63/3/275info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T14:57:27Zoai:ri.conicet.gov.ar:11336/19215instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 14:57:27.372CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Variational Principle for a Schrödinger Equation with Non-Hermitian Hamiltonian and Position-Dependent Mass |
title |
Variational Principle for a Schrödinger Equation with Non-Hermitian Hamiltonian and Position-Dependent Mass |
spellingShingle |
Variational Principle for a Schrödinger Equation with Non-Hermitian Hamiltonian and Position-Dependent Mass Plastino, Angel Ricardo Classical Field Theory Non-Hermitian Hamiltonian Position-Dependent Mass Schrödinger Equation |
title_short |
Variational Principle for a Schrödinger Equation with Non-Hermitian Hamiltonian and Position-Dependent Mass |
title_full |
Variational Principle for a Schrödinger Equation with Non-Hermitian Hamiltonian and Position-Dependent Mass |
title_fullStr |
Variational Principle for a Schrödinger Equation with Non-Hermitian Hamiltonian and Position-Dependent Mass |
title_full_unstemmed |
Variational Principle for a Schrödinger Equation with Non-Hermitian Hamiltonian and Position-Dependent Mass |
title_sort |
Variational Principle for a Schrödinger Equation with Non-Hermitian Hamiltonian and Position-Dependent Mass |
dc.creator.none.fl_str_mv |
Plastino, Angel Ricardo Vignat, C. Plastino, A. |
author |
Plastino, Angel Ricardo |
author_facet |
Plastino, Angel Ricardo Vignat, C. Plastino, A. |
author_role |
author |
author2 |
Vignat, C. Plastino, A. |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Classical Field Theory Non-Hermitian Hamiltonian Position-Dependent Mass Schrödinger Equation |
topic |
Classical Field Theory Non-Hermitian Hamiltonian Position-Dependent Mass Schrödinger Equation |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
A classical field theory for a Schrödinger equation with a non-Hermitian Hamiltonian describing a particle with position-dependent mass has been recently advanced by Nobre and Rego-Monteiro (NR) [Phys. Rev. A 88 (2013) 032105]. This field theory is based on a variational principle involving the wavefunction Ψ(x,t) and an auxiliary field Φ(x,t). It is here shown that the relation between the dynamics of the auxiliary field φ(x,i) and that of the original wavefunction Ψ(x,t) is deeper than suggested by the NR approach. Indeed, we formulate a variational principle for the aforementioned Schrödinger equation which is based solely on the wavefunction Ψ(x,t). A continuity equation for an appropriately defined probability density, and the concomitant preservation of the norm, follows from this variational principle via Noether´s theorem. Moreover, the norm-conservation law obtained by NR is reinterpreted as the preservation of the inner product between pairs of solutions of the variable mass Schrödinger equation. Fil: Plastino, Angel Ricardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro de Investigaciones y Transferencia del Noroeste de la Provincia de Buenos Aires. Universidad Nacional del Noroeste de la Provincia de Buenos Aires. Centro de Investigaciones y Transferencia del Noroeste de la Provincia de Buenos Aires; Argentina Fil: Vignat, C.. University of Tulane; Estados Unidos. Universite D'Orsay; Francia Fil: Plastino, A.. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - la Plata. Instituto de Física la Plata. Universidad Nacional de la Plata. Facultad de Ciencias Exactas. Instituto de Física la Plata; Argentina |
description |
A classical field theory for a Schrödinger equation with a non-Hermitian Hamiltonian describing a particle with position-dependent mass has been recently advanced by Nobre and Rego-Monteiro (NR) [Phys. Rev. A 88 (2013) 032105]. This field theory is based on a variational principle involving the wavefunction Ψ(x,t) and an auxiliary field Φ(x,t). It is here shown that the relation between the dynamics of the auxiliary field φ(x,i) and that of the original wavefunction Ψ(x,t) is deeper than suggested by the NR approach. Indeed, we formulate a variational principle for the aforementioned Schrödinger equation which is based solely on the wavefunction Ψ(x,t). A continuity equation for an appropriately defined probability density, and the concomitant preservation of the norm, follows from this variational principle via Noether´s theorem. Moreover, the norm-conservation law obtained by NR is reinterpreted as the preservation of the inner product between pairs of solutions of the variable mass Schrödinger equation. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015-03 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/19215 Plastino, Angel Ricardo; Vignat, C.; Plastino, A.; Variational Principle for a Schrödinger Equation with Non-Hermitian Hamiltonian and Position-Dependent Mass; Iop Publishing; Communications In Theoretical Physics; 63; 3; 3-2015; 275-278 0253-6102 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/19215 |
identifier_str_mv |
Plastino, Angel Ricardo; Vignat, C.; Plastino, A.; Variational Principle for a Schrödinger Equation with Non-Hermitian Hamiltonian and Position-Dependent Mass; Iop Publishing; Communications In Theoretical Physics; 63; 3; 3-2015; 275-278 0253-6102 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://iopscience.iop.org/article/10.1088/0253-6102/63/3/275 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Iop Publishing |
publisher.none.fl_str_mv |
Iop Publishing |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846083113452568576 |
score |
13.22299 |