Variational Principle for a Schrödinger Equation with Non-Hermitian Hamiltonian and Position-Dependent Mass

Autores
Plastino, Angel Ricardo; Vignat, C.; Plastino, A.
Año de publicación
2015
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
A classical field theory for a Schrödinger equation with a non-Hermitian Hamiltonian describing a particle with position-dependent mass has been recently advanced by Nobre and Rego-Monteiro (NR) [Phys. Rev. A 88 (2013) 032105]. This field theory is based on a variational principle involving the wavefunction Ψ(x,t) and an auxiliary field Φ(x,t). It is here shown that the relation between the dynamics of the auxiliary field φ(x,i) and that of the original wavefunction Ψ(x,t) is deeper than suggested by the NR approach. Indeed, we formulate a variational principle for the aforementioned Schrödinger equation which is based solely on the wavefunction Ψ(x,t). A continuity equation for an appropriately defined probability density, and the concomitant preservation of the norm, follows from this variational principle via Noether´s theorem. Moreover, the norm-conservation law obtained by NR is reinterpreted as the preservation of the inner product between pairs of solutions of the variable mass Schrödinger equation.
Fil: Plastino, Angel Ricardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro de Investigaciones y Transferencia del Noroeste de la Provincia de Buenos Aires. Universidad Nacional del Noroeste de la Provincia de Buenos Aires. Centro de Investigaciones y Transferencia del Noroeste de la Provincia de Buenos Aires; Argentina
Fil: Vignat, C.. University of Tulane; Estados Unidos. Universite D'Orsay; Francia
Fil: Plastino, A.. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - la Plata. Instituto de Física la Plata. Universidad Nacional de la Plata. Facultad de Ciencias Exactas. Instituto de Física la Plata; Argentina
Materia
Classical Field Theory
Non-Hermitian Hamiltonian
Position-Dependent Mass
Schrödinger Equation
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/19215

id CONICETDig_09ccd2027a0cd5709232e9a382544f7d
oai_identifier_str oai:ri.conicet.gov.ar:11336/19215
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Variational Principle for a Schrödinger Equation with Non-Hermitian Hamiltonian and Position-Dependent MassPlastino, Angel RicardoVignat, C.Plastino, A.Classical Field TheoryNon-Hermitian HamiltonianPosition-Dependent MassSchrödinger Equationhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1A classical field theory for a Schrödinger equation with a non-Hermitian Hamiltonian describing a particle with position-dependent mass has been recently advanced by Nobre and Rego-Monteiro (NR) [Phys. Rev. A 88 (2013) 032105]. This field theory is based on a variational principle involving the wavefunction Ψ(x,t) and an auxiliary field Φ(x,t). It is here shown that the relation between the dynamics of the auxiliary field φ(x,i) and that of the original wavefunction Ψ(x,t) is deeper than suggested by the NR approach. Indeed, we formulate a variational principle for the aforementioned Schrödinger equation which is based solely on the wavefunction Ψ(x,t). A continuity equation for an appropriately defined probability density, and the concomitant preservation of the norm, follows from this variational principle via Noether´s theorem. Moreover, the norm-conservation law obtained by NR is reinterpreted as the preservation of the inner product between pairs of solutions of the variable mass Schrödinger equation.Fil: Plastino, Angel Ricardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro de Investigaciones y Transferencia del Noroeste de la Provincia de Buenos Aires. Universidad Nacional del Noroeste de la Provincia de Buenos Aires. Centro de Investigaciones y Transferencia del Noroeste de la Provincia de Buenos Aires; ArgentinaFil: Vignat, C.. University of Tulane; Estados Unidos. Universite D'Orsay; FranciaFil: Plastino, A.. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - la Plata. Instituto de Física la Plata. Universidad Nacional de la Plata. Facultad de Ciencias Exactas. Instituto de Física la Plata; ArgentinaIop Publishing2015-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/19215Plastino, Angel Ricardo; Vignat, C.; Plastino, A.; Variational Principle for a Schrödinger Equation with Non-Hermitian Hamiltonian and Position-Dependent Mass; Iop Publishing; Communications In Theoretical Physics; 63; 3; 3-2015; 275-2780253-6102CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://iopscience.iop.org/article/10.1088/0253-6102/63/3/275info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T14:57:27Zoai:ri.conicet.gov.ar:11336/19215instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 14:57:27.372CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Variational Principle for a Schrödinger Equation with Non-Hermitian Hamiltonian and Position-Dependent Mass
title Variational Principle for a Schrödinger Equation with Non-Hermitian Hamiltonian and Position-Dependent Mass
spellingShingle Variational Principle for a Schrödinger Equation with Non-Hermitian Hamiltonian and Position-Dependent Mass
Plastino, Angel Ricardo
Classical Field Theory
Non-Hermitian Hamiltonian
Position-Dependent Mass
Schrödinger Equation
title_short Variational Principle for a Schrödinger Equation with Non-Hermitian Hamiltonian and Position-Dependent Mass
title_full Variational Principle for a Schrödinger Equation with Non-Hermitian Hamiltonian and Position-Dependent Mass
title_fullStr Variational Principle for a Schrödinger Equation with Non-Hermitian Hamiltonian and Position-Dependent Mass
title_full_unstemmed Variational Principle for a Schrödinger Equation with Non-Hermitian Hamiltonian and Position-Dependent Mass
title_sort Variational Principle for a Schrödinger Equation with Non-Hermitian Hamiltonian and Position-Dependent Mass
dc.creator.none.fl_str_mv Plastino, Angel Ricardo
Vignat, C.
Plastino, A.
author Plastino, Angel Ricardo
author_facet Plastino, Angel Ricardo
Vignat, C.
Plastino, A.
author_role author
author2 Vignat, C.
Plastino, A.
author2_role author
author
dc.subject.none.fl_str_mv Classical Field Theory
Non-Hermitian Hamiltonian
Position-Dependent Mass
Schrödinger Equation
topic Classical Field Theory
Non-Hermitian Hamiltonian
Position-Dependent Mass
Schrödinger Equation
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv A classical field theory for a Schrödinger equation with a non-Hermitian Hamiltonian describing a particle with position-dependent mass has been recently advanced by Nobre and Rego-Monteiro (NR) [Phys. Rev. A 88 (2013) 032105]. This field theory is based on a variational principle involving the wavefunction Ψ(x,t) and an auxiliary field Φ(x,t). It is here shown that the relation between the dynamics of the auxiliary field φ(x,i) and that of the original wavefunction Ψ(x,t) is deeper than suggested by the NR approach. Indeed, we formulate a variational principle for the aforementioned Schrödinger equation which is based solely on the wavefunction Ψ(x,t). A continuity equation for an appropriately defined probability density, and the concomitant preservation of the norm, follows from this variational principle via Noether´s theorem. Moreover, the norm-conservation law obtained by NR is reinterpreted as the preservation of the inner product between pairs of solutions of the variable mass Schrödinger equation.
Fil: Plastino, Angel Ricardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro de Investigaciones y Transferencia del Noroeste de la Provincia de Buenos Aires. Universidad Nacional del Noroeste de la Provincia de Buenos Aires. Centro de Investigaciones y Transferencia del Noroeste de la Provincia de Buenos Aires; Argentina
Fil: Vignat, C.. University of Tulane; Estados Unidos. Universite D'Orsay; Francia
Fil: Plastino, A.. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - la Plata. Instituto de Física la Plata. Universidad Nacional de la Plata. Facultad de Ciencias Exactas. Instituto de Física la Plata; Argentina
description A classical field theory for a Schrödinger equation with a non-Hermitian Hamiltonian describing a particle with position-dependent mass has been recently advanced by Nobre and Rego-Monteiro (NR) [Phys. Rev. A 88 (2013) 032105]. This field theory is based on a variational principle involving the wavefunction Ψ(x,t) and an auxiliary field Φ(x,t). It is here shown that the relation between the dynamics of the auxiliary field φ(x,i) and that of the original wavefunction Ψ(x,t) is deeper than suggested by the NR approach. Indeed, we formulate a variational principle for the aforementioned Schrödinger equation which is based solely on the wavefunction Ψ(x,t). A continuity equation for an appropriately defined probability density, and the concomitant preservation of the norm, follows from this variational principle via Noether´s theorem. Moreover, the norm-conservation law obtained by NR is reinterpreted as the preservation of the inner product between pairs of solutions of the variable mass Schrödinger equation.
publishDate 2015
dc.date.none.fl_str_mv 2015-03
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/19215
Plastino, Angel Ricardo; Vignat, C.; Plastino, A.; Variational Principle for a Schrödinger Equation with Non-Hermitian Hamiltonian and Position-Dependent Mass; Iop Publishing; Communications In Theoretical Physics; 63; 3; 3-2015; 275-278
0253-6102
CONICET Digital
CONICET
url http://hdl.handle.net/11336/19215
identifier_str_mv Plastino, Angel Ricardo; Vignat, C.; Plastino, A.; Variational Principle for a Schrödinger Equation with Non-Hermitian Hamiltonian and Position-Dependent Mass; Iop Publishing; Communications In Theoretical Physics; 63; 3; 3-2015; 275-278
0253-6102
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://iopscience.iop.org/article/10.1088/0253-6102/63/3/275
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Iop Publishing
publisher.none.fl_str_mv Iop Publishing
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846083113452568576
score 13.22299