The correlation contracted schrodinger equation: An accurate solution of the G-particle-hole hypervirial
- Autores
- Alcoba, Diego Ricardo; Valdemoro, C.; Tel, L. M.; Pérez-Romero, E.
- Año de publicación
- 2009
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The equation obtained by mapping the matrix representation of the Schrödinger equation with the 2nd-order correlation transition matrix elements into the 2-body space is the so called correlation contracted Schrödinger equation (CCSE) (Alcoba, Phys Rev A 2002, 65, 032519). As shown by Alcoba (Phys Rev A 2002, 65, 032519) the solution of the CCSE coincides with that of the Schrödinger equation. Here the attention is focused in the vanishing hypervirial of the correlation operator (GHV), which can be identified with the anti-Hermitian part of the CCSE. A comparative analysis of the GHV and the anti-Hermitian part of the contracted Schrödinger equation (ACSE) indicates that the former is a stronger stationarity condition than the latter. By applying a Heisenberg-like unitary transformation to the G-particle-hole operator (Valdemoro et al., Phys Rev A 2000, 61, 032507), a good approximation of the expectation value of this operator as well as of the GHV is obtained. The method is illustrated for the case of the Beryllium isoelectronic series as well as for the Li2 and BeH2 molecules. The correlation energies obtained are within 98.80-100.09% of the full-configuration interaction ones. The convergence of these calculations was faster when using the GHV than with the ACSE. © 2009 Wiley Periodicals, Inc.
Fil: Alcoba, Diego Ricardo. Universidad de Buenos Aires; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
Fil: Valdemoro, C.. Csic - Instituto de Matematicas y Fisica Fundamental; España
Fil: Tel, L. M.. Universidad de Salamanca; España
Fil: Pérez-Romero, E.. Universidad de Salamanca; España - Materia
-
Anti-Hermitian Contracted SchrÖDinger Equation
Contracted Schrodinger Equation
Correlation Matrix
Electronic Correlation Effects
G-Matrix
Reduced Density Matrix - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/61667
Ver los metadatos del registro completo
id |
CONICETDig_1482d95edadb520cacbd7ed10c103337 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/61667 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
The correlation contracted schrodinger equation: An accurate solution of the G-particle-hole hypervirialAlcoba, Diego RicardoValdemoro, C.Tel, L. M.Pérez-Romero, E.Anti-Hermitian Contracted SchrÖDinger EquationContracted Schrodinger EquationCorrelation MatrixElectronic Correlation EffectsG-MatrixReduced Density Matrixhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1The equation obtained by mapping the matrix representation of the Schrödinger equation with the 2nd-order correlation transition matrix elements into the 2-body space is the so called correlation contracted Schrödinger equation (CCSE) (Alcoba, Phys Rev A 2002, 65, 032519). As shown by Alcoba (Phys Rev A 2002, 65, 032519) the solution of the CCSE coincides with that of the Schrödinger equation. Here the attention is focused in the vanishing hypervirial of the correlation operator (GHV), which can be identified with the anti-Hermitian part of the CCSE. A comparative analysis of the GHV and the anti-Hermitian part of the contracted Schrödinger equation (ACSE) indicates that the former is a stronger stationarity condition than the latter. By applying a Heisenberg-like unitary transformation to the G-particle-hole operator (Valdemoro et al., Phys Rev A 2000, 61, 032507), a good approximation of the expectation value of this operator as well as of the GHV is obtained. The method is illustrated for the case of the Beryllium isoelectronic series as well as for the Li2 and BeH2 molecules. The correlation energies obtained are within 98.80-100.09% of the full-configuration interaction ones. The convergence of these calculations was faster when using the GHV than with the ACSE. © 2009 Wiley Periodicals, Inc.Fil: Alcoba, Diego Ricardo. Universidad de Buenos Aires; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; ArgentinaFil: Valdemoro, C.. Csic - Instituto de Matematicas y Fisica Fundamental; EspañaFil: Tel, L. M.. Universidad de Salamanca; EspañaFil: Pérez-Romero, E.. Universidad de Salamanca; EspañaJohn Wiley & Sons Inc2009-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/61667Alcoba, Diego Ricardo; Valdemoro, C.; Tel, L. M.; Pérez-Romero, E.; The correlation contracted schrodinger equation: An accurate solution of the G-particle-hole hypervirial; John Wiley & Sons Inc; International Journal of Quantum Chemistry; 109; 14; 3-2009; 3178-31900020-7608CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1002/qua.21943info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:32:39Zoai:ri.conicet.gov.ar:11336/61667instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:32:39.296CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
The correlation contracted schrodinger equation: An accurate solution of the G-particle-hole hypervirial |
title |
The correlation contracted schrodinger equation: An accurate solution of the G-particle-hole hypervirial |
spellingShingle |
The correlation contracted schrodinger equation: An accurate solution of the G-particle-hole hypervirial Alcoba, Diego Ricardo Anti-Hermitian Contracted SchrÖDinger Equation Contracted Schrodinger Equation Correlation Matrix Electronic Correlation Effects G-Matrix Reduced Density Matrix |
title_short |
The correlation contracted schrodinger equation: An accurate solution of the G-particle-hole hypervirial |
title_full |
The correlation contracted schrodinger equation: An accurate solution of the G-particle-hole hypervirial |
title_fullStr |
The correlation contracted schrodinger equation: An accurate solution of the G-particle-hole hypervirial |
title_full_unstemmed |
The correlation contracted schrodinger equation: An accurate solution of the G-particle-hole hypervirial |
title_sort |
The correlation contracted schrodinger equation: An accurate solution of the G-particle-hole hypervirial |
dc.creator.none.fl_str_mv |
Alcoba, Diego Ricardo Valdemoro, C. Tel, L. M. Pérez-Romero, E. |
author |
Alcoba, Diego Ricardo |
author_facet |
Alcoba, Diego Ricardo Valdemoro, C. Tel, L. M. Pérez-Romero, E. |
author_role |
author |
author2 |
Valdemoro, C. Tel, L. M. Pérez-Romero, E. |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
Anti-Hermitian Contracted SchrÖDinger Equation Contracted Schrodinger Equation Correlation Matrix Electronic Correlation Effects G-Matrix Reduced Density Matrix |
topic |
Anti-Hermitian Contracted SchrÖDinger Equation Contracted Schrodinger Equation Correlation Matrix Electronic Correlation Effects G-Matrix Reduced Density Matrix |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
The equation obtained by mapping the matrix representation of the Schrödinger equation with the 2nd-order correlation transition matrix elements into the 2-body space is the so called correlation contracted Schrödinger equation (CCSE) (Alcoba, Phys Rev A 2002, 65, 032519). As shown by Alcoba (Phys Rev A 2002, 65, 032519) the solution of the CCSE coincides with that of the Schrödinger equation. Here the attention is focused in the vanishing hypervirial of the correlation operator (GHV), which can be identified with the anti-Hermitian part of the CCSE. A comparative analysis of the GHV and the anti-Hermitian part of the contracted Schrödinger equation (ACSE) indicates that the former is a stronger stationarity condition than the latter. By applying a Heisenberg-like unitary transformation to the G-particle-hole operator (Valdemoro et al., Phys Rev A 2000, 61, 032507), a good approximation of the expectation value of this operator as well as of the GHV is obtained. The method is illustrated for the case of the Beryllium isoelectronic series as well as for the Li2 and BeH2 molecules. The correlation energies obtained are within 98.80-100.09% of the full-configuration interaction ones. The convergence of these calculations was faster when using the GHV than with the ACSE. © 2009 Wiley Periodicals, Inc. Fil: Alcoba, Diego Ricardo. Universidad de Buenos Aires; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina Fil: Valdemoro, C.. Csic - Instituto de Matematicas y Fisica Fundamental; España Fil: Tel, L. M.. Universidad de Salamanca; España Fil: Pérez-Romero, E.. Universidad de Salamanca; España |
description |
The equation obtained by mapping the matrix representation of the Schrödinger equation with the 2nd-order correlation transition matrix elements into the 2-body space is the so called correlation contracted Schrödinger equation (CCSE) (Alcoba, Phys Rev A 2002, 65, 032519). As shown by Alcoba (Phys Rev A 2002, 65, 032519) the solution of the CCSE coincides with that of the Schrödinger equation. Here the attention is focused in the vanishing hypervirial of the correlation operator (GHV), which can be identified with the anti-Hermitian part of the CCSE. A comparative analysis of the GHV and the anti-Hermitian part of the contracted Schrödinger equation (ACSE) indicates that the former is a stronger stationarity condition than the latter. By applying a Heisenberg-like unitary transformation to the G-particle-hole operator (Valdemoro et al., Phys Rev A 2000, 61, 032507), a good approximation of the expectation value of this operator as well as of the GHV is obtained. The method is illustrated for the case of the Beryllium isoelectronic series as well as for the Li2 and BeH2 molecules. The correlation energies obtained are within 98.80-100.09% of the full-configuration interaction ones. The convergence of these calculations was faster when using the GHV than with the ACSE. © 2009 Wiley Periodicals, Inc. |
publishDate |
2009 |
dc.date.none.fl_str_mv |
2009-03 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/61667 Alcoba, Diego Ricardo; Valdemoro, C.; Tel, L. M.; Pérez-Romero, E.; The correlation contracted schrodinger equation: An accurate solution of the G-particle-hole hypervirial; John Wiley & Sons Inc; International Journal of Quantum Chemistry; 109; 14; 3-2009; 3178-3190 0020-7608 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/61667 |
identifier_str_mv |
Alcoba, Diego Ricardo; Valdemoro, C.; Tel, L. M.; Pérez-Romero, E.; The correlation contracted schrodinger equation: An accurate solution of the G-particle-hole hypervirial; John Wiley & Sons Inc; International Journal of Quantum Chemistry; 109; 14; 3-2009; 3178-3190 0020-7608 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1002/qua.21943 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
John Wiley & Sons Inc |
publisher.none.fl_str_mv |
John Wiley & Sons Inc |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614340301291520 |
score |
13.070432 |