The correlation contracted schrodinger equation: An accurate solution of the G-particle-hole hypervirial

Autores
Alcoba, Diego Ricardo; Valdemoro, C.; Tel, L. M.; Pérez-Romero, E.
Año de publicación
2009
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The equation obtained by mapping the matrix representation of the Schrödinger equation with the 2nd-order correlation transition matrix elements into the 2-body space is the so called correlation contracted Schrödinger equation (CCSE) (Alcoba, Phys Rev A 2002, 65, 032519). As shown by Alcoba (Phys Rev A 2002, 65, 032519) the solution of the CCSE coincides with that of the Schrödinger equation. Here the attention is focused in the vanishing hypervirial of the correlation operator (GHV), which can be identified with the anti-Hermitian part of the CCSE. A comparative analysis of the GHV and the anti-Hermitian part of the contracted Schrödinger equation (ACSE) indicates that the former is a stronger stationarity condition than the latter. By applying a Heisenberg-like unitary transformation to the G-particle-hole operator (Valdemoro et al., Phys Rev A 2000, 61, 032507), a good approximation of the expectation value of this operator as well as of the GHV is obtained. The method is illustrated for the case of the Beryllium isoelectronic series as well as for the Li2 and BeH2 molecules. The correlation energies obtained are within 98.80-100.09% of the full-configuration interaction ones. The convergence of these calculations was faster when using the GHV than with the ACSE. © 2009 Wiley Periodicals, Inc.
Fil: Alcoba, Diego Ricardo. Universidad de Buenos Aires; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
Fil: Valdemoro, C.. Csic - Instituto de Matematicas y Fisica Fundamental; España
Fil: Tel, L. M.. Universidad de Salamanca; España
Fil: Pérez-Romero, E.. Universidad de Salamanca; España
Materia
Anti-Hermitian Contracted SchrÖDinger Equation
Contracted Schrodinger Equation
Correlation Matrix
Electronic Correlation Effects
G-Matrix
Reduced Density Matrix
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/61667

id CONICETDig_1482d95edadb520cacbd7ed10c103337
oai_identifier_str oai:ri.conicet.gov.ar:11336/61667
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling The correlation contracted schrodinger equation: An accurate solution of the G-particle-hole hypervirialAlcoba, Diego RicardoValdemoro, C.Tel, L. M.Pérez-Romero, E.Anti-Hermitian Contracted SchrÖDinger EquationContracted Schrodinger EquationCorrelation MatrixElectronic Correlation EffectsG-MatrixReduced Density Matrixhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1The equation obtained by mapping the matrix representation of the Schrödinger equation with the 2nd-order correlation transition matrix elements into the 2-body space is the so called correlation contracted Schrödinger equation (CCSE) (Alcoba, Phys Rev A 2002, 65, 032519). As shown by Alcoba (Phys Rev A 2002, 65, 032519) the solution of the CCSE coincides with that of the Schrödinger equation. Here the attention is focused in the vanishing hypervirial of the correlation operator (GHV), which can be identified with the anti-Hermitian part of the CCSE. A comparative analysis of the GHV and the anti-Hermitian part of the contracted Schrödinger equation (ACSE) indicates that the former is a stronger stationarity condition than the latter. By applying a Heisenberg-like unitary transformation to the G-particle-hole operator (Valdemoro et al., Phys Rev A 2000, 61, 032507), a good approximation of the expectation value of this operator as well as of the GHV is obtained. The method is illustrated for the case of the Beryllium isoelectronic series as well as for the Li2 and BeH2 molecules. The correlation energies obtained are within 98.80-100.09% of the full-configuration interaction ones. The convergence of these calculations was faster when using the GHV than with the ACSE. © 2009 Wiley Periodicals, Inc.Fil: Alcoba, Diego Ricardo. Universidad de Buenos Aires; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; ArgentinaFil: Valdemoro, C.. Csic - Instituto de Matematicas y Fisica Fundamental; EspañaFil: Tel, L. M.. Universidad de Salamanca; EspañaFil: Pérez-Romero, E.. Universidad de Salamanca; EspañaJohn Wiley & Sons Inc2009-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/61667Alcoba, Diego Ricardo; Valdemoro, C.; Tel, L. M.; Pérez-Romero, E.; The correlation contracted schrodinger equation: An accurate solution of the G-particle-hole hypervirial; John Wiley & Sons Inc; International Journal of Quantum Chemistry; 109; 14; 3-2009; 3178-31900020-7608CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1002/qua.21943info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:32:39Zoai:ri.conicet.gov.ar:11336/61667instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:32:39.296CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv The correlation contracted schrodinger equation: An accurate solution of the G-particle-hole hypervirial
title The correlation contracted schrodinger equation: An accurate solution of the G-particle-hole hypervirial
spellingShingle The correlation contracted schrodinger equation: An accurate solution of the G-particle-hole hypervirial
Alcoba, Diego Ricardo
Anti-Hermitian Contracted SchrÖDinger Equation
Contracted Schrodinger Equation
Correlation Matrix
Electronic Correlation Effects
G-Matrix
Reduced Density Matrix
title_short The correlation contracted schrodinger equation: An accurate solution of the G-particle-hole hypervirial
title_full The correlation contracted schrodinger equation: An accurate solution of the G-particle-hole hypervirial
title_fullStr The correlation contracted schrodinger equation: An accurate solution of the G-particle-hole hypervirial
title_full_unstemmed The correlation contracted schrodinger equation: An accurate solution of the G-particle-hole hypervirial
title_sort The correlation contracted schrodinger equation: An accurate solution of the G-particle-hole hypervirial
dc.creator.none.fl_str_mv Alcoba, Diego Ricardo
Valdemoro, C.
Tel, L. M.
Pérez-Romero, E.
author Alcoba, Diego Ricardo
author_facet Alcoba, Diego Ricardo
Valdemoro, C.
Tel, L. M.
Pérez-Romero, E.
author_role author
author2 Valdemoro, C.
Tel, L. M.
Pérez-Romero, E.
author2_role author
author
author
dc.subject.none.fl_str_mv Anti-Hermitian Contracted SchrÖDinger Equation
Contracted Schrodinger Equation
Correlation Matrix
Electronic Correlation Effects
G-Matrix
Reduced Density Matrix
topic Anti-Hermitian Contracted SchrÖDinger Equation
Contracted Schrodinger Equation
Correlation Matrix
Electronic Correlation Effects
G-Matrix
Reduced Density Matrix
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv The equation obtained by mapping the matrix representation of the Schrödinger equation with the 2nd-order correlation transition matrix elements into the 2-body space is the so called correlation contracted Schrödinger equation (CCSE) (Alcoba, Phys Rev A 2002, 65, 032519). As shown by Alcoba (Phys Rev A 2002, 65, 032519) the solution of the CCSE coincides with that of the Schrödinger equation. Here the attention is focused in the vanishing hypervirial of the correlation operator (GHV), which can be identified with the anti-Hermitian part of the CCSE. A comparative analysis of the GHV and the anti-Hermitian part of the contracted Schrödinger equation (ACSE) indicates that the former is a stronger stationarity condition than the latter. By applying a Heisenberg-like unitary transformation to the G-particle-hole operator (Valdemoro et al., Phys Rev A 2000, 61, 032507), a good approximation of the expectation value of this operator as well as of the GHV is obtained. The method is illustrated for the case of the Beryllium isoelectronic series as well as for the Li2 and BeH2 molecules. The correlation energies obtained are within 98.80-100.09% of the full-configuration interaction ones. The convergence of these calculations was faster when using the GHV than with the ACSE. © 2009 Wiley Periodicals, Inc.
Fil: Alcoba, Diego Ricardo. Universidad de Buenos Aires; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
Fil: Valdemoro, C.. Csic - Instituto de Matematicas y Fisica Fundamental; España
Fil: Tel, L. M.. Universidad de Salamanca; España
Fil: Pérez-Romero, E.. Universidad de Salamanca; España
description The equation obtained by mapping the matrix representation of the Schrödinger equation with the 2nd-order correlation transition matrix elements into the 2-body space is the so called correlation contracted Schrödinger equation (CCSE) (Alcoba, Phys Rev A 2002, 65, 032519). As shown by Alcoba (Phys Rev A 2002, 65, 032519) the solution of the CCSE coincides with that of the Schrödinger equation. Here the attention is focused in the vanishing hypervirial of the correlation operator (GHV), which can be identified with the anti-Hermitian part of the CCSE. A comparative analysis of the GHV and the anti-Hermitian part of the contracted Schrödinger equation (ACSE) indicates that the former is a stronger stationarity condition than the latter. By applying a Heisenberg-like unitary transformation to the G-particle-hole operator (Valdemoro et al., Phys Rev A 2000, 61, 032507), a good approximation of the expectation value of this operator as well as of the GHV is obtained. The method is illustrated for the case of the Beryllium isoelectronic series as well as for the Li2 and BeH2 molecules. The correlation energies obtained are within 98.80-100.09% of the full-configuration interaction ones. The convergence of these calculations was faster when using the GHV than with the ACSE. © 2009 Wiley Periodicals, Inc.
publishDate 2009
dc.date.none.fl_str_mv 2009-03
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/61667
Alcoba, Diego Ricardo; Valdemoro, C.; Tel, L. M.; Pérez-Romero, E.; The correlation contracted schrodinger equation: An accurate solution of the G-particle-hole hypervirial; John Wiley & Sons Inc; International Journal of Quantum Chemistry; 109; 14; 3-2009; 3178-3190
0020-7608
CONICET Digital
CONICET
url http://hdl.handle.net/11336/61667
identifier_str_mv Alcoba, Diego Ricardo; Valdemoro, C.; Tel, L. M.; Pérez-Romero, E.; The correlation contracted schrodinger equation: An accurate solution of the G-particle-hole hypervirial; John Wiley & Sons Inc; International Journal of Quantum Chemistry; 109; 14; 3-2009; 3178-3190
0020-7608
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1002/qua.21943
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv John Wiley & Sons Inc
publisher.none.fl_str_mv John Wiley & Sons Inc
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614340301291520
score 13.070432