Hyperpolarized 1H long lived states originating from parahydrogen accessed by rf irradiation
- Autores
- Franzoni, Maria Belen; Graafen, D.; Buljubasich Gentiletti, Lisandro; Schreiber, L. M.; Spiess, H. W.; Münnemann, K.
- Año de publicación
- 2013
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Hyperpolarization has found many applications in Nuclear Magnetic Resonance (NMR) and Magnetic Resonance Imaging (MRI). However, its usage is still limited to the observation of relatively fast processes because of its short lifetimes. This issue can be circumvented by storing the hyperpolarization in a slowly relaxing singlet state. Symmetrical molecules hyperpolarized by Parahydrogen Induced Hyperpolarization (PHIP) provide a straightforward access to hyperpolarized singlet states because the initial parahydrogen singlet state is preserved at almost any magnetic field strength. In these systems, which show a remarkably long 1H singlet state lifetime of several minutes, the conversion of the NMR silent singlet state to observable magnetization is feasible due to the existence of singlet-triplet level anti-crossings. Here, we demonstrate that scaling the chemical shift Hamiltonian by rf irradiation is sufficient to transform the singlet into an observable triplet state. Moreover, because the application of one long rf pulse is only partially converting the singlet state, we developed a multiconversion sequence consisting of a train of long rf pulses resulting in successive singlet to triplet conversions. This sequence is used to measure the singlet state relaxation time in a simple way at two different magnetic fields. We show that this approach is valid for almost any magnetic field strength and can be performed even in the less homogeneous field of an MRI scanner, allowing for new applications of hyperpolarized NMR and MRI.
Fil: Franzoni, Maria Belen. Max Planck Institute for Polymer Research; Alemania. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Graafen, D.. Max Planck Institute for Polymer Research; Alemania. Johannes Gutenberg University Medical Center; Alemania
Fil: Buljubasich Gentiletti, Lisandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; Argentina
Fil: Schreiber, L. M.. Johannes Gutenberg University Medical Center; Alemania
Fil: Spiess, H. W.. Max Planck Institute for Polymer Research; Alemania
Fil: Münnemann, K.. Max Planck Institute for Polymer Research; Alemania - Materia
-
Long Lived States
Hyperpolarization
Parahydrogen
Phip - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/26032
Ver los metadatos del registro completo
id |
CONICETDig_09022f8f953bdb3ee778872e6b8a8e49 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/26032 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Hyperpolarized 1H long lived states originating from parahydrogen accessed by rf irradiationFranzoni, Maria BelenGraafen, D.Buljubasich Gentiletti, LisandroSchreiber, L. M.Spiess, H. W.Münnemann, K.Long Lived StatesHyperpolarizationParahydrogenPhiphttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1Hyperpolarization has found many applications in Nuclear Magnetic Resonance (NMR) and Magnetic Resonance Imaging (MRI). However, its usage is still limited to the observation of relatively fast processes because of its short lifetimes. This issue can be circumvented by storing the hyperpolarization in a slowly relaxing singlet state. Symmetrical molecules hyperpolarized by Parahydrogen Induced Hyperpolarization (PHIP) provide a straightforward access to hyperpolarized singlet states because the initial parahydrogen singlet state is preserved at almost any magnetic field strength. In these systems, which show a remarkably long 1H singlet state lifetime of several minutes, the conversion of the NMR silent singlet state to observable magnetization is feasible due to the existence of singlet-triplet level anti-crossings. Here, we demonstrate that scaling the chemical shift Hamiltonian by rf irradiation is sufficient to transform the singlet into an observable triplet state. Moreover, because the application of one long rf pulse is only partially converting the singlet state, we developed a multiconversion sequence consisting of a train of long rf pulses resulting in successive singlet to triplet conversions. This sequence is used to measure the singlet state relaxation time in a simple way at two different magnetic fields. We show that this approach is valid for almost any magnetic field strength and can be performed even in the less homogeneous field of an MRI scanner, allowing for new applications of hyperpolarized NMR and MRI.Fil: Franzoni, Maria Belen. Max Planck Institute for Polymer Research; Alemania. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Graafen, D.. Max Planck Institute for Polymer Research; Alemania. Johannes Gutenberg University Medical Center; AlemaniaFil: Buljubasich Gentiletti, Lisandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; ArgentinaFil: Schreiber, L. M.. Johannes Gutenberg University Medical Center; AlemaniaFil: Spiess, H. W.. Max Planck Institute for Polymer Research; AlemaniaFil: Münnemann, K.. Max Planck Institute for Polymer Research; AlemaniaRoyal Society of Chemistry2013-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/26032Franzoni, Maria Belen; Graafen, D.; Buljubasich Gentiletti, Lisandro; Schreiber, L. M.; Spiess, H. W.; et al.; Hyperpolarized 1H long lived states originating from parahydrogen accessed by rf irradiation; Royal Society of Chemistry; Physical Chemistry Chemical Physics; 15; 40; 9-2013; 17233-172391463-9076CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1039/C3CP52029Cinfo:eu-repo/semantics/altIdentifier/url/http://pubs.rsc.org/-/content/articlelanding/2013/cp/c3cp52029c/unauth#!divAbstractinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:43:55Zoai:ri.conicet.gov.ar:11336/26032instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:43:55.652CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Hyperpolarized 1H long lived states originating from parahydrogen accessed by rf irradiation |
title |
Hyperpolarized 1H long lived states originating from parahydrogen accessed by rf irradiation |
spellingShingle |
Hyperpolarized 1H long lived states originating from parahydrogen accessed by rf irradiation Franzoni, Maria Belen Long Lived States Hyperpolarization Parahydrogen Phip |
title_short |
Hyperpolarized 1H long lived states originating from parahydrogen accessed by rf irradiation |
title_full |
Hyperpolarized 1H long lived states originating from parahydrogen accessed by rf irradiation |
title_fullStr |
Hyperpolarized 1H long lived states originating from parahydrogen accessed by rf irradiation |
title_full_unstemmed |
Hyperpolarized 1H long lived states originating from parahydrogen accessed by rf irradiation |
title_sort |
Hyperpolarized 1H long lived states originating from parahydrogen accessed by rf irradiation |
dc.creator.none.fl_str_mv |
Franzoni, Maria Belen Graafen, D. Buljubasich Gentiletti, Lisandro Schreiber, L. M. Spiess, H. W. Münnemann, K. |
author |
Franzoni, Maria Belen |
author_facet |
Franzoni, Maria Belen Graafen, D. Buljubasich Gentiletti, Lisandro Schreiber, L. M. Spiess, H. W. Münnemann, K. |
author_role |
author |
author2 |
Graafen, D. Buljubasich Gentiletti, Lisandro Schreiber, L. M. Spiess, H. W. Münnemann, K. |
author2_role |
author author author author author |
dc.subject.none.fl_str_mv |
Long Lived States Hyperpolarization Parahydrogen Phip |
topic |
Long Lived States Hyperpolarization Parahydrogen Phip |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Hyperpolarization has found many applications in Nuclear Magnetic Resonance (NMR) and Magnetic Resonance Imaging (MRI). However, its usage is still limited to the observation of relatively fast processes because of its short lifetimes. This issue can be circumvented by storing the hyperpolarization in a slowly relaxing singlet state. Symmetrical molecules hyperpolarized by Parahydrogen Induced Hyperpolarization (PHIP) provide a straightforward access to hyperpolarized singlet states because the initial parahydrogen singlet state is preserved at almost any magnetic field strength. In these systems, which show a remarkably long 1H singlet state lifetime of several minutes, the conversion of the NMR silent singlet state to observable magnetization is feasible due to the existence of singlet-triplet level anti-crossings. Here, we demonstrate that scaling the chemical shift Hamiltonian by rf irradiation is sufficient to transform the singlet into an observable triplet state. Moreover, because the application of one long rf pulse is only partially converting the singlet state, we developed a multiconversion sequence consisting of a train of long rf pulses resulting in successive singlet to triplet conversions. This sequence is used to measure the singlet state relaxation time in a simple way at two different magnetic fields. We show that this approach is valid for almost any magnetic field strength and can be performed even in the less homogeneous field of an MRI scanner, allowing for new applications of hyperpolarized NMR and MRI. Fil: Franzoni, Maria Belen. Max Planck Institute for Polymer Research; Alemania. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Graafen, D.. Max Planck Institute for Polymer Research; Alemania. Johannes Gutenberg University Medical Center; Alemania Fil: Buljubasich Gentiletti, Lisandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; Argentina Fil: Schreiber, L. M.. Johannes Gutenberg University Medical Center; Alemania Fil: Spiess, H. W.. Max Planck Institute for Polymer Research; Alemania Fil: Münnemann, K.. Max Planck Institute for Polymer Research; Alemania |
description |
Hyperpolarization has found many applications in Nuclear Magnetic Resonance (NMR) and Magnetic Resonance Imaging (MRI). However, its usage is still limited to the observation of relatively fast processes because of its short lifetimes. This issue can be circumvented by storing the hyperpolarization in a slowly relaxing singlet state. Symmetrical molecules hyperpolarized by Parahydrogen Induced Hyperpolarization (PHIP) provide a straightforward access to hyperpolarized singlet states because the initial parahydrogen singlet state is preserved at almost any magnetic field strength. In these systems, which show a remarkably long 1H singlet state lifetime of several minutes, the conversion of the NMR silent singlet state to observable magnetization is feasible due to the existence of singlet-triplet level anti-crossings. Here, we demonstrate that scaling the chemical shift Hamiltonian by rf irradiation is sufficient to transform the singlet into an observable triplet state. Moreover, because the application of one long rf pulse is only partially converting the singlet state, we developed a multiconversion sequence consisting of a train of long rf pulses resulting in successive singlet to triplet conversions. This sequence is used to measure the singlet state relaxation time in a simple way at two different magnetic fields. We show that this approach is valid for almost any magnetic field strength and can be performed even in the less homogeneous field of an MRI scanner, allowing for new applications of hyperpolarized NMR and MRI. |
publishDate |
2013 |
dc.date.none.fl_str_mv |
2013-09 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/26032 Franzoni, Maria Belen; Graafen, D.; Buljubasich Gentiletti, Lisandro; Schreiber, L. M.; Spiess, H. W.; et al.; Hyperpolarized 1H long lived states originating from parahydrogen accessed by rf irradiation; Royal Society of Chemistry; Physical Chemistry Chemical Physics; 15; 40; 9-2013; 17233-17239 1463-9076 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/26032 |
identifier_str_mv |
Franzoni, Maria Belen; Graafen, D.; Buljubasich Gentiletti, Lisandro; Schreiber, L. M.; Spiess, H. W.; et al.; Hyperpolarized 1H long lived states originating from parahydrogen accessed by rf irradiation; Royal Society of Chemistry; Physical Chemistry Chemical Physics; 15; 40; 9-2013; 17233-17239 1463-9076 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1039/C3CP52029C info:eu-repo/semantics/altIdentifier/url/http://pubs.rsc.org/-/content/articlelanding/2013/cp/c3cp52029c/unauth#!divAbstract |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Royal Society of Chemistry |
publisher.none.fl_str_mv |
Royal Society of Chemistry |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842268632994807808 |
score |
13.13397 |