On The Development Of Finite Volume Methods For Computational Solid Mechanics

Autores
Limache, Alejandro Cesar; Idelsohn, Sergio Rodolfo
Año de publicación
2007
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Since its initial development as a tool for structural analysis around the mid-fifties the Finite Element Method (FEM) has evolved to become the most popular and used method in modern Computational Solid Mechanics. On the other hand, the Finite Volume Method (FVM) born almost at the same time, has evolved too and become one of the most popular methods in the area of Computational Fluid Mechanics. Both methods have surpassed the historical finite differences method and other discretization methods, and nowadays, researchers typically use one or the other to obtain numerical simulations of all types of physical phenomena. However, although FEM is at present being actively used to solve the equations of compressible and incompressible flows, there are not many works about the usage of FVM in solving the equations of solid materials. The physical flavor, the conservation properties and some properties of reduced integration of the FVM, are advantages that could be very useful in the context of Computational Solid Mechanics as they are in the context of Computational Fluid Mechanics (CFD). In the present work we show our first results in our attempt to develop a Finite Volume Method for Non-linear Solid Mechanics.
Fil: Limache, Alejandro Cesar. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina
Fil: Idelsohn, Sergio Rodolfo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina
Materia
Finite Volume method
Finite Element method
Finite Deformations
Piola-KirchhoffStress Tensor
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/20906

id CONICETDig_a4409e4d54df480ea959b407e9e5ed74
oai_identifier_str oai:ri.conicet.gov.ar:11336/20906
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling On The Development Of Finite Volume Methods For Computational Solid MechanicsLimache, Alejandro CesarIdelsohn, Sergio RodolfoFinite Volume methodFinite Element methodFinite DeformationsPiola-KirchhoffStress Tensorhttps://purl.org/becyt/ford/2.3https://purl.org/becyt/ford/2Since its initial development as a tool for structural analysis around the mid-fifties the Finite Element Method (FEM) has evolved to become the most popular and used method in modern Computational Solid Mechanics. On the other hand, the Finite Volume Method (FVM) born almost at the same time, has evolved too and become one of the most popular methods in the area of Computational Fluid Mechanics. Both methods have surpassed the historical finite differences method and other discretization methods, and nowadays, researchers typically use one or the other to obtain numerical simulations of all types of physical phenomena. However, although FEM is at present being actively used to solve the equations of compressible and incompressible flows, there are not many works about the usage of FVM in solving the equations of solid materials. The physical flavor, the conservation properties and some properties of reduced integration of the FVM, are advantages that could be very useful in the context of Computational Solid Mechanics as they are in the context of Computational Fluid Mechanics (CFD). In the present work we show our first results in our attempt to develop a Finite Volume Method for Non-linear Solid Mechanics.Fil: Limache, Alejandro Cesar. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; ArgentinaFil: Idelsohn, Sergio Rodolfo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; ArgentinaAsociacion Argentina de Mecanica Computacional2007-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/20906Limache, Alejandro Cesar; Idelsohn, Sergio Rodolfo; On The Development Of Finite Volume Methods For Computational Solid Mechanics; Asociacion Argentina de Mecanica Computacional; Mecanica Computacional; XXVI; 11; 10-2007; 827-8431666-6070CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://www.cimec.org.ar/ojs/index.php/mc/article/view/1277info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:13:30Zoai:ri.conicet.gov.ar:11336/20906instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:13:30.799CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv On The Development Of Finite Volume Methods For Computational Solid Mechanics
title On The Development Of Finite Volume Methods For Computational Solid Mechanics
spellingShingle On The Development Of Finite Volume Methods For Computational Solid Mechanics
Limache, Alejandro Cesar
Finite Volume method
Finite Element method
Finite Deformations
Piola-KirchhoffStress Tensor
title_short On The Development Of Finite Volume Methods For Computational Solid Mechanics
title_full On The Development Of Finite Volume Methods For Computational Solid Mechanics
title_fullStr On The Development Of Finite Volume Methods For Computational Solid Mechanics
title_full_unstemmed On The Development Of Finite Volume Methods For Computational Solid Mechanics
title_sort On The Development Of Finite Volume Methods For Computational Solid Mechanics
dc.creator.none.fl_str_mv Limache, Alejandro Cesar
Idelsohn, Sergio Rodolfo
author Limache, Alejandro Cesar
author_facet Limache, Alejandro Cesar
Idelsohn, Sergio Rodolfo
author_role author
author2 Idelsohn, Sergio Rodolfo
author2_role author
dc.subject.none.fl_str_mv Finite Volume method
Finite Element method
Finite Deformations
Piola-KirchhoffStress Tensor
topic Finite Volume method
Finite Element method
Finite Deformations
Piola-KirchhoffStress Tensor
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.3
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv Since its initial development as a tool for structural analysis around the mid-fifties the Finite Element Method (FEM) has evolved to become the most popular and used method in modern Computational Solid Mechanics. On the other hand, the Finite Volume Method (FVM) born almost at the same time, has evolved too and become one of the most popular methods in the area of Computational Fluid Mechanics. Both methods have surpassed the historical finite differences method and other discretization methods, and nowadays, researchers typically use one or the other to obtain numerical simulations of all types of physical phenomena. However, although FEM is at present being actively used to solve the equations of compressible and incompressible flows, there are not many works about the usage of FVM in solving the equations of solid materials. The physical flavor, the conservation properties and some properties of reduced integration of the FVM, are advantages that could be very useful in the context of Computational Solid Mechanics as they are in the context of Computational Fluid Mechanics (CFD). In the present work we show our first results in our attempt to develop a Finite Volume Method for Non-linear Solid Mechanics.
Fil: Limache, Alejandro Cesar. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina
Fil: Idelsohn, Sergio Rodolfo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina
description Since its initial development as a tool for structural analysis around the mid-fifties the Finite Element Method (FEM) has evolved to become the most popular and used method in modern Computational Solid Mechanics. On the other hand, the Finite Volume Method (FVM) born almost at the same time, has evolved too and become one of the most popular methods in the area of Computational Fluid Mechanics. Both methods have surpassed the historical finite differences method and other discretization methods, and nowadays, researchers typically use one or the other to obtain numerical simulations of all types of physical phenomena. However, although FEM is at present being actively used to solve the equations of compressible and incompressible flows, there are not many works about the usage of FVM in solving the equations of solid materials. The physical flavor, the conservation properties and some properties of reduced integration of the FVM, are advantages that could be very useful in the context of Computational Solid Mechanics as they are in the context of Computational Fluid Mechanics (CFD). In the present work we show our first results in our attempt to develop a Finite Volume Method for Non-linear Solid Mechanics.
publishDate 2007
dc.date.none.fl_str_mv 2007-10
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/20906
Limache, Alejandro Cesar; Idelsohn, Sergio Rodolfo; On The Development Of Finite Volume Methods For Computational Solid Mechanics; Asociacion Argentina de Mecanica Computacional; Mecanica Computacional; XXVI; 11; 10-2007; 827-843
1666-6070
CONICET Digital
CONICET
url http://hdl.handle.net/11336/20906
identifier_str_mv Limache, Alejandro Cesar; Idelsohn, Sergio Rodolfo; On The Development Of Finite Volume Methods For Computational Solid Mechanics; Asociacion Argentina de Mecanica Computacional; Mecanica Computacional; XXVI; 11; 10-2007; 827-843
1666-6070
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://www.cimec.org.ar/ojs/index.php/mc/article/view/1277
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Asociacion Argentina de Mecanica Computacional
publisher.none.fl_str_mv Asociacion Argentina de Mecanica Computacional
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614052920164352
score 13.070432