On The Development Of Finite Volume Methods For Computational Solid Mechanics
- Autores
- Limache, Alejandro Cesar; Idelsohn, Sergio Rodolfo
- Año de publicación
- 2007
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Since its initial development as a tool for structural analysis around the mid-fifties the Finite Element Method (FEM) has evolved to become the most popular and used method in modern Computational Solid Mechanics. On the other hand, the Finite Volume Method (FVM) born almost at the same time, has evolved too and become one of the most popular methods in the area of Computational Fluid Mechanics. Both methods have surpassed the historical finite differences method and other discretization methods, and nowadays, researchers typically use one or the other to obtain numerical simulations of all types of physical phenomena. However, although FEM is at present being actively used to solve the equations of compressible and incompressible flows, there are not many works about the usage of FVM in solving the equations of solid materials. The physical flavor, the conservation properties and some properties of reduced integration of the FVM, are advantages that could be very useful in the context of Computational Solid Mechanics as they are in the context of Computational Fluid Mechanics (CFD). In the present work we show our first results in our attempt to develop a Finite Volume Method for Non-linear Solid Mechanics.
Fil: Limache, Alejandro Cesar. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina
Fil: Idelsohn, Sergio Rodolfo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina - Materia
-
Finite Volume method
Finite Element method
Finite Deformations
Piola-KirchhoffStress Tensor - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/20906
Ver los metadatos del registro completo
id |
CONICETDig_a4409e4d54df480ea959b407e9e5ed74 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/20906 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
On The Development Of Finite Volume Methods For Computational Solid MechanicsLimache, Alejandro CesarIdelsohn, Sergio RodolfoFinite Volume methodFinite Element methodFinite DeformationsPiola-KirchhoffStress Tensorhttps://purl.org/becyt/ford/2.3https://purl.org/becyt/ford/2Since its initial development as a tool for structural analysis around the mid-fifties the Finite Element Method (FEM) has evolved to become the most popular and used method in modern Computational Solid Mechanics. On the other hand, the Finite Volume Method (FVM) born almost at the same time, has evolved too and become one of the most popular methods in the area of Computational Fluid Mechanics. Both methods have surpassed the historical finite differences method and other discretization methods, and nowadays, researchers typically use one or the other to obtain numerical simulations of all types of physical phenomena. However, although FEM is at present being actively used to solve the equations of compressible and incompressible flows, there are not many works about the usage of FVM in solving the equations of solid materials. The physical flavor, the conservation properties and some properties of reduced integration of the FVM, are advantages that could be very useful in the context of Computational Solid Mechanics as they are in the context of Computational Fluid Mechanics (CFD). In the present work we show our first results in our attempt to develop a Finite Volume Method for Non-linear Solid Mechanics.Fil: Limache, Alejandro Cesar. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; ArgentinaFil: Idelsohn, Sergio Rodolfo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; ArgentinaAsociacion Argentina de Mecanica Computacional2007-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/20906Limache, Alejandro Cesar; Idelsohn, Sergio Rodolfo; On The Development Of Finite Volume Methods For Computational Solid Mechanics; Asociacion Argentina de Mecanica Computacional; Mecanica Computacional; XXVI; 11; 10-2007; 827-8431666-6070CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://www.cimec.org.ar/ojs/index.php/mc/article/view/1277info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:13:30Zoai:ri.conicet.gov.ar:11336/20906instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:13:30.799CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
On The Development Of Finite Volume Methods For Computational Solid Mechanics |
title |
On The Development Of Finite Volume Methods For Computational Solid Mechanics |
spellingShingle |
On The Development Of Finite Volume Methods For Computational Solid Mechanics Limache, Alejandro Cesar Finite Volume method Finite Element method Finite Deformations Piola-KirchhoffStress Tensor |
title_short |
On The Development Of Finite Volume Methods For Computational Solid Mechanics |
title_full |
On The Development Of Finite Volume Methods For Computational Solid Mechanics |
title_fullStr |
On The Development Of Finite Volume Methods For Computational Solid Mechanics |
title_full_unstemmed |
On The Development Of Finite Volume Methods For Computational Solid Mechanics |
title_sort |
On The Development Of Finite Volume Methods For Computational Solid Mechanics |
dc.creator.none.fl_str_mv |
Limache, Alejandro Cesar Idelsohn, Sergio Rodolfo |
author |
Limache, Alejandro Cesar |
author_facet |
Limache, Alejandro Cesar Idelsohn, Sergio Rodolfo |
author_role |
author |
author2 |
Idelsohn, Sergio Rodolfo |
author2_role |
author |
dc.subject.none.fl_str_mv |
Finite Volume method Finite Element method Finite Deformations Piola-KirchhoffStress Tensor |
topic |
Finite Volume method Finite Element method Finite Deformations Piola-KirchhoffStress Tensor |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.3 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
Since its initial development as a tool for structural analysis around the mid-fifties the Finite Element Method (FEM) has evolved to become the most popular and used method in modern Computational Solid Mechanics. On the other hand, the Finite Volume Method (FVM) born almost at the same time, has evolved too and become one of the most popular methods in the area of Computational Fluid Mechanics. Both methods have surpassed the historical finite differences method and other discretization methods, and nowadays, researchers typically use one or the other to obtain numerical simulations of all types of physical phenomena. However, although FEM is at present being actively used to solve the equations of compressible and incompressible flows, there are not many works about the usage of FVM in solving the equations of solid materials. The physical flavor, the conservation properties and some properties of reduced integration of the FVM, are advantages that could be very useful in the context of Computational Solid Mechanics as they are in the context of Computational Fluid Mechanics (CFD). In the present work we show our first results in our attempt to develop a Finite Volume Method for Non-linear Solid Mechanics. Fil: Limache, Alejandro Cesar. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina Fil: Idelsohn, Sergio Rodolfo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina |
description |
Since its initial development as a tool for structural analysis around the mid-fifties the Finite Element Method (FEM) has evolved to become the most popular and used method in modern Computational Solid Mechanics. On the other hand, the Finite Volume Method (FVM) born almost at the same time, has evolved too and become one of the most popular methods in the area of Computational Fluid Mechanics. Both methods have surpassed the historical finite differences method and other discretization methods, and nowadays, researchers typically use one or the other to obtain numerical simulations of all types of physical phenomena. However, although FEM is at present being actively used to solve the equations of compressible and incompressible flows, there are not many works about the usage of FVM in solving the equations of solid materials. The physical flavor, the conservation properties and some properties of reduced integration of the FVM, are advantages that could be very useful in the context of Computational Solid Mechanics as they are in the context of Computational Fluid Mechanics (CFD). In the present work we show our first results in our attempt to develop a Finite Volume Method for Non-linear Solid Mechanics. |
publishDate |
2007 |
dc.date.none.fl_str_mv |
2007-10 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/20906 Limache, Alejandro Cesar; Idelsohn, Sergio Rodolfo; On The Development Of Finite Volume Methods For Computational Solid Mechanics; Asociacion Argentina de Mecanica Computacional; Mecanica Computacional; XXVI; 11; 10-2007; 827-843 1666-6070 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/20906 |
identifier_str_mv |
Limache, Alejandro Cesar; Idelsohn, Sergio Rodolfo; On The Development Of Finite Volume Methods For Computational Solid Mechanics; Asociacion Argentina de Mecanica Computacional; Mecanica Computacional; XXVI; 11; 10-2007; 827-843 1666-6070 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://www.cimec.org.ar/ojs/index.php/mc/article/view/1277 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Asociacion Argentina de Mecanica Computacional |
publisher.none.fl_str_mv |
Asociacion Argentina de Mecanica Computacional |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614052920164352 |
score |
13.070432 |