Whole cell electrochemistry of electricity-producing microorganisms evidence an adaptation for optimal exocellular electron transport

Autores
Busalmen, Juan Pablo; Esteve Núñez, Abraham; Miguel Feliu, Juan
Año de publicación
2008
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The mechanism(s) by which electricity-producing microorganisms interact with an electrode is poorly understood. Outer membrane cytochromes and conductive pili are being considered as possible players, but the available information does not concur to a consensus mechanism yet. In this work we demonstrate that Geobacter sulfurreducens cells are able to change the way in which they exchange electrons with an electrode as a response to changes in the applied electrode potential. After several hours of polarization at 0.1 VAg/AgCl-KCl (saturated), the voltammetric signature of the attached cells showed a single redox pair with a formal redox potential of about -0.08 V as calculated from chronopotentiometric analysis. A similar signal was obtained from cells adapted to 0.4 V. However, new redox couples were detected after conditioning at 0.6 V. A large oxidation process beyond 0.5 V transferring a higher current than that obtained at 0.1 V was found to be associated with two reduction waves at 0.23 and 0.50 V. The apparent equilibrium potential of these new processes was estimated to be at about 0.48 V from programmed current potentiometric results. Importantly, when polarization was lowered again to 0.1 V for 18 additional hours, the signals obtained at 0.6 V were found to greatly diminish in amplitude, whereas those previously found at the lower conditioning potential were recovered. Results clearly show the reversibility of cell adaptation to the electrode potential and point to the polarization potential as a key variable to optimize energy production from an electricity producing population.
Fil: Busalmen, Juan Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; Argentina
Fil: Esteve Núñez, Abraham. Universidad de Alicante; España
Fil: Miguel Feliu, Juan. Universidad de Alicante; España
Materia
Electrode-Reducing Bacteria
Bioenergy
Bioelectrochemistry
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/67967

id CONICETDig_08e4c30457594d25e75cfdfcbbe6318f
oai_identifier_str oai:ri.conicet.gov.ar:11336/67967
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Whole cell electrochemistry of electricity-producing microorganisms evidence an adaptation for optimal exocellular electron transportBusalmen, Juan PabloEsteve Núñez, AbrahamMiguel Feliu, JuanElectrode-Reducing BacteriaBioenergyBioelectrochemistryhttps://purl.org/becyt/ford/1.4https://purl.org/becyt/ford/1The mechanism(s) by which electricity-producing microorganisms interact with an electrode is poorly understood. Outer membrane cytochromes and conductive pili are being considered as possible players, but the available information does not concur to a consensus mechanism yet. In this work we demonstrate that Geobacter sulfurreducens cells are able to change the way in which they exchange electrons with an electrode as a response to changes in the applied electrode potential. After several hours of polarization at 0.1 VAg/AgCl-KCl (saturated), the voltammetric signature of the attached cells showed a single redox pair with a formal redox potential of about -0.08 V as calculated from chronopotentiometric analysis. A similar signal was obtained from cells adapted to 0.4 V. However, new redox couples were detected after conditioning at 0.6 V. A large oxidation process beyond 0.5 V transferring a higher current than that obtained at 0.1 V was found to be associated with two reduction waves at 0.23 and 0.50 V. The apparent equilibrium potential of these new processes was estimated to be at about 0.48 V from programmed current potentiometric results. Importantly, when polarization was lowered again to 0.1 V for 18 additional hours, the signals obtained at 0.6 V were found to greatly diminish in amplitude, whereas those previously found at the lower conditioning potential were recovered. Results clearly show the reversibility of cell adaptation to the electrode potential and point to the polarization potential as a key variable to optimize energy production from an electricity producing population.Fil: Busalmen, Juan Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; ArgentinaFil: Esteve Núñez, Abraham. Universidad de Alicante; EspañaFil: Miguel Feliu, Juan. Universidad de Alicante; EspañaAmerican Chemical Society2008-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/67967Busalmen, Juan Pablo; Esteve Núñez, Abraham; Miguel Feliu, Juan; Whole cell electrochemistry of electricity-producing microorganisms evidence an adaptation for optimal exocellular electron transport; American Chemical Society; Environmental Science & Technology; 42; 7; 4-2008; 2445-24500013-936XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://pubs.acs.org/doi/abs/10.1021/es702569yinfo:eu-repo/semantics/altIdentifier/doi/10.1021/es702569yinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:46:55Zoai:ri.conicet.gov.ar:11336/67967instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:46:56.18CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Whole cell electrochemistry of electricity-producing microorganisms evidence an adaptation for optimal exocellular electron transport
title Whole cell electrochemistry of electricity-producing microorganisms evidence an adaptation for optimal exocellular electron transport
spellingShingle Whole cell electrochemistry of electricity-producing microorganisms evidence an adaptation for optimal exocellular electron transport
Busalmen, Juan Pablo
Electrode-Reducing Bacteria
Bioenergy
Bioelectrochemistry
title_short Whole cell electrochemistry of electricity-producing microorganisms evidence an adaptation for optimal exocellular electron transport
title_full Whole cell electrochemistry of electricity-producing microorganisms evidence an adaptation for optimal exocellular electron transport
title_fullStr Whole cell electrochemistry of electricity-producing microorganisms evidence an adaptation for optimal exocellular electron transport
title_full_unstemmed Whole cell electrochemistry of electricity-producing microorganisms evidence an adaptation for optimal exocellular electron transport
title_sort Whole cell electrochemistry of electricity-producing microorganisms evidence an adaptation for optimal exocellular electron transport
dc.creator.none.fl_str_mv Busalmen, Juan Pablo
Esteve Núñez, Abraham
Miguel Feliu, Juan
author Busalmen, Juan Pablo
author_facet Busalmen, Juan Pablo
Esteve Núñez, Abraham
Miguel Feliu, Juan
author_role author
author2 Esteve Núñez, Abraham
Miguel Feliu, Juan
author2_role author
author
dc.subject.none.fl_str_mv Electrode-Reducing Bacteria
Bioenergy
Bioelectrochemistry
topic Electrode-Reducing Bacteria
Bioenergy
Bioelectrochemistry
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.4
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv The mechanism(s) by which electricity-producing microorganisms interact with an electrode is poorly understood. Outer membrane cytochromes and conductive pili are being considered as possible players, but the available information does not concur to a consensus mechanism yet. In this work we demonstrate that Geobacter sulfurreducens cells are able to change the way in which they exchange electrons with an electrode as a response to changes in the applied electrode potential. After several hours of polarization at 0.1 VAg/AgCl-KCl (saturated), the voltammetric signature of the attached cells showed a single redox pair with a formal redox potential of about -0.08 V as calculated from chronopotentiometric analysis. A similar signal was obtained from cells adapted to 0.4 V. However, new redox couples were detected after conditioning at 0.6 V. A large oxidation process beyond 0.5 V transferring a higher current than that obtained at 0.1 V was found to be associated with two reduction waves at 0.23 and 0.50 V. The apparent equilibrium potential of these new processes was estimated to be at about 0.48 V from programmed current potentiometric results. Importantly, when polarization was lowered again to 0.1 V for 18 additional hours, the signals obtained at 0.6 V were found to greatly diminish in amplitude, whereas those previously found at the lower conditioning potential were recovered. Results clearly show the reversibility of cell adaptation to the electrode potential and point to the polarization potential as a key variable to optimize energy production from an electricity producing population.
Fil: Busalmen, Juan Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; Argentina
Fil: Esteve Núñez, Abraham. Universidad de Alicante; España
Fil: Miguel Feliu, Juan. Universidad de Alicante; España
description The mechanism(s) by which electricity-producing microorganisms interact with an electrode is poorly understood. Outer membrane cytochromes and conductive pili are being considered as possible players, but the available information does not concur to a consensus mechanism yet. In this work we demonstrate that Geobacter sulfurreducens cells are able to change the way in which they exchange electrons with an electrode as a response to changes in the applied electrode potential. After several hours of polarization at 0.1 VAg/AgCl-KCl (saturated), the voltammetric signature of the attached cells showed a single redox pair with a formal redox potential of about -0.08 V as calculated from chronopotentiometric analysis. A similar signal was obtained from cells adapted to 0.4 V. However, new redox couples were detected after conditioning at 0.6 V. A large oxidation process beyond 0.5 V transferring a higher current than that obtained at 0.1 V was found to be associated with two reduction waves at 0.23 and 0.50 V. The apparent equilibrium potential of these new processes was estimated to be at about 0.48 V from programmed current potentiometric results. Importantly, when polarization was lowered again to 0.1 V for 18 additional hours, the signals obtained at 0.6 V were found to greatly diminish in amplitude, whereas those previously found at the lower conditioning potential were recovered. Results clearly show the reversibility of cell adaptation to the electrode potential and point to the polarization potential as a key variable to optimize energy production from an electricity producing population.
publishDate 2008
dc.date.none.fl_str_mv 2008-04
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/67967
Busalmen, Juan Pablo; Esteve Núñez, Abraham; Miguel Feliu, Juan; Whole cell electrochemistry of electricity-producing microorganisms evidence an adaptation for optimal exocellular electron transport; American Chemical Society; Environmental Science & Technology; 42; 7; 4-2008; 2445-2450
0013-936X
CONICET Digital
CONICET
url http://hdl.handle.net/11336/67967
identifier_str_mv Busalmen, Juan Pablo; Esteve Núñez, Abraham; Miguel Feliu, Juan; Whole cell electrochemistry of electricity-producing microorganisms evidence an adaptation for optimal exocellular electron transport; American Chemical Society; Environmental Science & Technology; 42; 7; 4-2008; 2445-2450
0013-936X
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://pubs.acs.org/doi/abs/10.1021/es702569y
info:eu-repo/semantics/altIdentifier/doi/10.1021/es702569y
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv American Chemical Society
publisher.none.fl_str_mv American Chemical Society
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614511760244736
score 13.070432