Biochar as a substitute for graphite in microbial electrochemical technologies
- Autores
- Antic Gorrazzi, Sofia Julieta; Massazza, Diego Ariel; Pedetta, Andrea; Silva, Leonel Ignacio; Prados, Belén; Fouga, Gastón Galo; Bonanni, P. Sebastian
- Año de publicación
- 2023
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Biochar has emerged as an attractive electrode material due to its biocompatibility, low cost andreduced environmental impact. The temperature at which biochar is produced greatly affects itsphysicochemical properties and its environmental performance. Despite that, only biochar obtainedat relatively high temperatures (800 to 1000 °C) has been applied in microbial electrochemicaltechnologies (METs) so far. In this work, the physicochemical and electrical properties of biocharelectrodes obtained at several temperatures (500 °C to 1000 °C) are explored and compared tothose of graphite which is the most commonly used electrode material in METs. Besides, theassociated carbon emissions and energy input of the production process at each temperature areestimated and compared to those of graphite. Results indicate that low-temperature (600 °C)biochar electrodes generate about half of the electric current obtained with high-temperaturebiochar or graphite electrodes. Furthermore, carbon emissions and energetic inputs for theproduction of low-temperature biochar are much lower than those of graphite production, with the600 °C electrodes having a net positive carbon footprint and also a lower production cost.Nevertheless, further research is needed to optimize biochar conductivity and mechanicalperformance in order to allow its integration into large scale METs.
Fil: Antic Gorrazzi, Sofia Julieta. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; Argentina
Fil: Massazza, Diego Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; Argentina
Fil: Pedetta, Andrea. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; Argentina
Fil: Silva, Leonel Ignacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; Argentina
Fil: Prados, Belén. Comisión Nacional de Energía Atómica; Argentina
Fil: Fouga, Gastón Galo. Comisión Nacional de Energía Atómica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Bonanni, P. Sebastian. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; Argentina - Materia
-
LOW-TEMPERATURE BIOCHAR ELECTRODES
BIOELECTROCHEMISTRY
PAPYRUS BIOCHAR
GEOBACTER SULFURREDUCENS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/229882
Ver los metadatos del registro completo
id |
CONICETDig_1c76dcfa2d4b5d75751ab88a1fd438de |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/229882 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Biochar as a substitute for graphite in microbial electrochemical technologiesAntic Gorrazzi, Sofia JulietaMassazza, Diego ArielPedetta, AndreaSilva, Leonel IgnacioPrados, BelénFouga, Gastón GaloBonanni, P. SebastianLOW-TEMPERATURE BIOCHAR ELECTRODESBIOELECTROCHEMISTRYPAPYRUS BIOCHARGEOBACTER SULFURREDUCENShttps://purl.org/becyt/ford/2.5https://purl.org/becyt/ford/2Biochar has emerged as an attractive electrode material due to its biocompatibility, low cost andreduced environmental impact. The temperature at which biochar is produced greatly affects itsphysicochemical properties and its environmental performance. Despite that, only biochar obtainedat relatively high temperatures (800 to 1000 °C) has been applied in microbial electrochemicaltechnologies (METs) so far. In this work, the physicochemical and electrical properties of biocharelectrodes obtained at several temperatures (500 °C to 1000 °C) are explored and compared tothose of graphite which is the most commonly used electrode material in METs. Besides, theassociated carbon emissions and energy input of the production process at each temperature areestimated and compared to those of graphite. Results indicate that low-temperature (600 °C)biochar electrodes generate about half of the electric current obtained with high-temperaturebiochar or graphite electrodes. Furthermore, carbon emissions and energetic inputs for theproduction of low-temperature biochar are much lower than those of graphite production, with the600 °C electrodes having a net positive carbon footprint and also a lower production cost.Nevertheless, further research is needed to optimize biochar conductivity and mechanicalperformance in order to allow its integration into large scale METs.Fil: Antic Gorrazzi, Sofia Julieta. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; ArgentinaFil: Massazza, Diego Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; ArgentinaFil: Pedetta, Andrea. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; ArgentinaFil: Silva, Leonel Ignacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; ArgentinaFil: Prados, Belén. Comisión Nacional de Energía Atómica; ArgentinaFil: Fouga, Gastón Galo. Comisión Nacional de Energía Atómica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Bonanni, P. Sebastian. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; ArgentinaRoyal Society of Chemistry2023-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/229882Antic Gorrazzi, Sofia Julieta; Massazza, Diego Ariel; Pedetta, Andrea; Silva, Leonel Ignacio; Prados, Belén; et al.; Biochar as a substitute for graphite in microbial electrochemical technologies; Royal Society of Chemistry; RSC Sustainability; 1; 5; 5-2023; 1200-12102753-8125CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://xlink.rsc.org/?DOI=D3SU00041Ainfo:eu-repo/semantics/altIdentifier/doi/10.1039/D3SU00041Ainfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:44:59Zoai:ri.conicet.gov.ar:11336/229882instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:44:59.767CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Biochar as a substitute for graphite in microbial electrochemical technologies |
title |
Biochar as a substitute for graphite in microbial electrochemical technologies |
spellingShingle |
Biochar as a substitute for graphite in microbial electrochemical technologies Antic Gorrazzi, Sofia Julieta LOW-TEMPERATURE BIOCHAR ELECTRODES BIOELECTROCHEMISTRY PAPYRUS BIOCHAR GEOBACTER SULFURREDUCENS |
title_short |
Biochar as a substitute for graphite in microbial electrochemical technologies |
title_full |
Biochar as a substitute for graphite in microbial electrochemical technologies |
title_fullStr |
Biochar as a substitute for graphite in microbial electrochemical technologies |
title_full_unstemmed |
Biochar as a substitute for graphite in microbial electrochemical technologies |
title_sort |
Biochar as a substitute for graphite in microbial electrochemical technologies |
dc.creator.none.fl_str_mv |
Antic Gorrazzi, Sofia Julieta Massazza, Diego Ariel Pedetta, Andrea Silva, Leonel Ignacio Prados, Belén Fouga, Gastón Galo Bonanni, P. Sebastian |
author |
Antic Gorrazzi, Sofia Julieta |
author_facet |
Antic Gorrazzi, Sofia Julieta Massazza, Diego Ariel Pedetta, Andrea Silva, Leonel Ignacio Prados, Belén Fouga, Gastón Galo Bonanni, P. Sebastian |
author_role |
author |
author2 |
Massazza, Diego Ariel Pedetta, Andrea Silva, Leonel Ignacio Prados, Belén Fouga, Gastón Galo Bonanni, P. Sebastian |
author2_role |
author author author author author author |
dc.subject.none.fl_str_mv |
LOW-TEMPERATURE BIOCHAR ELECTRODES BIOELECTROCHEMISTRY PAPYRUS BIOCHAR GEOBACTER SULFURREDUCENS |
topic |
LOW-TEMPERATURE BIOCHAR ELECTRODES BIOELECTROCHEMISTRY PAPYRUS BIOCHAR GEOBACTER SULFURREDUCENS |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.5 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
Biochar has emerged as an attractive electrode material due to its biocompatibility, low cost andreduced environmental impact. The temperature at which biochar is produced greatly affects itsphysicochemical properties and its environmental performance. Despite that, only biochar obtainedat relatively high temperatures (800 to 1000 °C) has been applied in microbial electrochemicaltechnologies (METs) so far. In this work, the physicochemical and electrical properties of biocharelectrodes obtained at several temperatures (500 °C to 1000 °C) are explored and compared tothose of graphite which is the most commonly used electrode material in METs. Besides, theassociated carbon emissions and energy input of the production process at each temperature areestimated and compared to those of graphite. Results indicate that low-temperature (600 °C)biochar electrodes generate about half of the electric current obtained with high-temperaturebiochar or graphite electrodes. Furthermore, carbon emissions and energetic inputs for theproduction of low-temperature biochar are much lower than those of graphite production, with the600 °C electrodes having a net positive carbon footprint and also a lower production cost.Nevertheless, further research is needed to optimize biochar conductivity and mechanicalperformance in order to allow its integration into large scale METs. Fil: Antic Gorrazzi, Sofia Julieta. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; Argentina Fil: Massazza, Diego Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; Argentina Fil: Pedetta, Andrea. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; Argentina Fil: Silva, Leonel Ignacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; Argentina Fil: Prados, Belén. Comisión Nacional de Energía Atómica; Argentina Fil: Fouga, Gastón Galo. Comisión Nacional de Energía Atómica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Bonanni, P. Sebastian. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; Argentina |
description |
Biochar has emerged as an attractive electrode material due to its biocompatibility, low cost andreduced environmental impact. The temperature at which biochar is produced greatly affects itsphysicochemical properties and its environmental performance. Despite that, only biochar obtainedat relatively high temperatures (800 to 1000 °C) has been applied in microbial electrochemicaltechnologies (METs) so far. In this work, the physicochemical and electrical properties of biocharelectrodes obtained at several temperatures (500 °C to 1000 °C) are explored and compared tothose of graphite which is the most commonly used electrode material in METs. Besides, theassociated carbon emissions and energy input of the production process at each temperature areestimated and compared to those of graphite. Results indicate that low-temperature (600 °C)biochar electrodes generate about half of the electric current obtained with high-temperaturebiochar or graphite electrodes. Furthermore, carbon emissions and energetic inputs for theproduction of low-temperature biochar are much lower than those of graphite production, with the600 °C electrodes having a net positive carbon footprint and also a lower production cost.Nevertheless, further research is needed to optimize biochar conductivity and mechanicalperformance in order to allow its integration into large scale METs. |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-05 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/229882 Antic Gorrazzi, Sofia Julieta; Massazza, Diego Ariel; Pedetta, Andrea; Silva, Leonel Ignacio; Prados, Belén; et al.; Biochar as a substitute for graphite in microbial electrochemical technologies; Royal Society of Chemistry; RSC Sustainability; 1; 5; 5-2023; 1200-1210 2753-8125 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/229882 |
identifier_str_mv |
Antic Gorrazzi, Sofia Julieta; Massazza, Diego Ariel; Pedetta, Andrea; Silva, Leonel Ignacio; Prados, Belén; et al.; Biochar as a substitute for graphite in microbial electrochemical technologies; Royal Society of Chemistry; RSC Sustainability; 1; 5; 5-2023; 1200-1210 2753-8125 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://xlink.rsc.org/?DOI=D3SU00041A info:eu-repo/semantics/altIdentifier/doi/10.1039/D3SU00041A |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Royal Society of Chemistry |
publisher.none.fl_str_mv |
Royal Society of Chemistry |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842268701770907648 |
score |
13.13397 |