Riesz transforms for laguerre expansions
- Autores
- Harboure, Eleonor Ofelia; Torrea Hernández, José Luis; Viviani, Beatriz Eleonora
- Año de publicación
- 2006
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We analyze boundedness properties of some operators related to the heat-diffusion semigroup associated to Laguerre functions systems. In particular, for any α > -1, we introduce appropriate Laguerre Riesz Transforms and we obtain power-weighted V inequalities, 1 < p < ∞. We achieve this result by taking advantage of the existing classical relationship between n-variable Hermite polynomials and Laguerre polynomials on the half line of type α = n/2 - 1. Such connection allows us to transfer known boundedness properties for Hermite operators to Laguerre operators corresponding to those specific values of α. To extend the results to any α > -1, we make use of transplantation and some weighted inequalities we obtain in the Hermite setting (which we believe of independent interest).
Fil: Harboure, Eleonor Ofelia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina
Fil: Torrea Hernández, José Luis. Universidad Autónoma de Madrid; España
Fil: Viviani, Beatriz Eleonora. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina - Materia
-
Laguerre Functions Systems
Riesz Transforms
Weighted Inequalities - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/84074
Ver los metadatos del registro completo
id |
CONICETDig_36a3c84f7c142aed1fc4b70ff9cb5a25 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/84074 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Riesz transforms for laguerre expansionsHarboure, Eleonor OfeliaTorrea Hernández, José LuisViviani, Beatriz EleonoraLaguerre Functions SystemsRiesz TransformsWeighted Inequalitieshttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We analyze boundedness properties of some operators related to the heat-diffusion semigroup associated to Laguerre functions systems. In particular, for any α > -1, we introduce appropriate Laguerre Riesz Transforms and we obtain power-weighted V inequalities, 1 < p < ∞. We achieve this result by taking advantage of the existing classical relationship between n-variable Hermite polynomials and Laguerre polynomials on the half line of type α = n/2 - 1. Such connection allows us to transfer known boundedness properties for Hermite operators to Laguerre operators corresponding to those specific values of α. To extend the results to any α > -1, we make use of transplantation and some weighted inequalities we obtain in the Hermite setting (which we believe of independent interest).Fil: Harboure, Eleonor Ofelia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; ArgentinaFil: Torrea Hernández, José Luis. Universidad Autónoma de Madrid; EspañaFil: Viviani, Beatriz Eleonora. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; ArgentinaIndiana University2006-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/84074Harboure, Eleonor Ofelia; Torrea Hernández, José Luis; Viviani, Beatriz Eleonora; Riesz transforms for laguerre expansions; Indiana University; Indiana University Mathematics Journal; 55; 3; 12-2006; 999-10140022-2518CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1512/iumj.2006.55.2650info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:02:35Zoai:ri.conicet.gov.ar:11336/84074instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:02:36.127CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Riesz transforms for laguerre expansions |
title |
Riesz transforms for laguerre expansions |
spellingShingle |
Riesz transforms for laguerre expansions Harboure, Eleonor Ofelia Laguerre Functions Systems Riesz Transforms Weighted Inequalities |
title_short |
Riesz transforms for laguerre expansions |
title_full |
Riesz transforms for laguerre expansions |
title_fullStr |
Riesz transforms for laguerre expansions |
title_full_unstemmed |
Riesz transforms for laguerre expansions |
title_sort |
Riesz transforms for laguerre expansions |
dc.creator.none.fl_str_mv |
Harboure, Eleonor Ofelia Torrea Hernández, José Luis Viviani, Beatriz Eleonora |
author |
Harboure, Eleonor Ofelia |
author_facet |
Harboure, Eleonor Ofelia Torrea Hernández, José Luis Viviani, Beatriz Eleonora |
author_role |
author |
author2 |
Torrea Hernández, José Luis Viviani, Beatriz Eleonora |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Laguerre Functions Systems Riesz Transforms Weighted Inequalities |
topic |
Laguerre Functions Systems Riesz Transforms Weighted Inequalities |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We analyze boundedness properties of some operators related to the heat-diffusion semigroup associated to Laguerre functions systems. In particular, for any α > -1, we introduce appropriate Laguerre Riesz Transforms and we obtain power-weighted V inequalities, 1 < p < ∞. We achieve this result by taking advantage of the existing classical relationship between n-variable Hermite polynomials and Laguerre polynomials on the half line of type α = n/2 - 1. Such connection allows us to transfer known boundedness properties for Hermite operators to Laguerre operators corresponding to those specific values of α. To extend the results to any α > -1, we make use of transplantation and some weighted inequalities we obtain in the Hermite setting (which we believe of independent interest). Fil: Harboure, Eleonor Ofelia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina Fil: Torrea Hernández, José Luis. Universidad Autónoma de Madrid; España Fil: Viviani, Beatriz Eleonora. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina |
description |
We analyze boundedness properties of some operators related to the heat-diffusion semigroup associated to Laguerre functions systems. In particular, for any α > -1, we introduce appropriate Laguerre Riesz Transforms and we obtain power-weighted V inequalities, 1 < p < ∞. We achieve this result by taking advantage of the existing classical relationship between n-variable Hermite polynomials and Laguerre polynomials on the half line of type α = n/2 - 1. Such connection allows us to transfer known boundedness properties for Hermite operators to Laguerre operators corresponding to those specific values of α. To extend the results to any α > -1, we make use of transplantation and some weighted inequalities we obtain in the Hermite setting (which we believe of independent interest). |
publishDate |
2006 |
dc.date.none.fl_str_mv |
2006-12 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/84074 Harboure, Eleonor Ofelia; Torrea Hernández, José Luis; Viviani, Beatriz Eleonora; Riesz transforms for laguerre expansions; Indiana University; Indiana University Mathematics Journal; 55; 3; 12-2006; 999-1014 0022-2518 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/84074 |
identifier_str_mv |
Harboure, Eleonor Ofelia; Torrea Hernández, José Luis; Viviani, Beatriz Eleonora; Riesz transforms for laguerre expansions; Indiana University; Indiana University Mathematics Journal; 55; 3; 12-2006; 999-1014 0022-2518 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1512/iumj.2006.55.2650 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Indiana University |
publisher.none.fl_str_mv |
Indiana University |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269765633048576 |
score |
13.13397 |