The logic Ł•
- Autores
- Sagastume, Marta Susana; San Martín, Hernán Javier
- Año de publicación
- 2014
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The algebraic category MV•is the image of MV, the category whose objects are the MV-algebras, by theequivalenceK•(cf. [7, 8]). In this paper we define the logic Ł•whose Lindenbaum algebra is an MV•-algebra(object of MV•), and establish a link between Ł•and the infinite valued Łukasiewicz logic Ł. We definecU-operators, that have properties of universal quantifiers, and establish a bijection that maps an MV-algebraendowed with a U-operator (cf. [20–22]) into an MV•-algebra endowed with acU-operator. This map extendsto a functor that is a categorical equivalence.
Fil: Sagastume, Marta Susana. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matemáticas; Argentina
Fil: San Martín, Hernán Javier. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matemáticas; Argentina - Materia
-
Equivalencia
Mv-Algebras
Logica
Cuantificadores - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/32869
Ver los metadatos del registro completo
id |
CONICETDig_0863d12c017d88ffed39f90be5030295 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/32869 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
The logic Ł•Sagastume, Marta SusanaSan Martín, Hernán JavierEquivalenciaMv-AlgebrasLogicaCuantificadoreshttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1The algebraic category MV•is the image of MV, the category whose objects are the MV-algebras, by theequivalenceK•(cf. [7, 8]). In this paper we define the logic Ł•whose Lindenbaum algebra is an MV•-algebra(object of MV•), and establish a link between Ł•and the infinite valued Łukasiewicz logic Ł. We definecU-operators, that have properties of universal quantifiers, and establish a bijection that maps an MV-algebraendowed with a U-operator (cf. [20–22]) into an MV•-algebra endowed with acU-operator. This map extendsto a functor that is a categorical equivalence.Fil: Sagastume, Marta Susana. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matemáticas; ArgentinaFil: San Martín, Hernán Javier. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matemáticas; ArgentinaWiley VCH Verlag2014-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/32869Sagastume, Marta Susana; San Martín, Hernán Javier; The logic Ł•; Wiley VCH Verlag; Mathematical Logic Quarterly; 60; 6; 10-2014; 375-3880942-5616CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1002/malq.201200105info:eu-repo/semantics/altIdentifier/url/http://onlinelibrary.wiley.com/doi/10.1002/malq.201200105/abstractinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:32:29Zoai:ri.conicet.gov.ar:11336/32869instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:32:29.895CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
The logic Ł• |
title |
The logic Ł• |
spellingShingle |
The logic Ł• Sagastume, Marta Susana Equivalencia Mv-Algebras Logica Cuantificadores |
title_short |
The logic Ł• |
title_full |
The logic Ł• |
title_fullStr |
The logic Ł• |
title_full_unstemmed |
The logic Ł• |
title_sort |
The logic Ł• |
dc.creator.none.fl_str_mv |
Sagastume, Marta Susana San Martín, Hernán Javier |
author |
Sagastume, Marta Susana |
author_facet |
Sagastume, Marta Susana San Martín, Hernán Javier |
author_role |
author |
author2 |
San Martín, Hernán Javier |
author2_role |
author |
dc.subject.none.fl_str_mv |
Equivalencia Mv-Algebras Logica Cuantificadores |
topic |
Equivalencia Mv-Algebras Logica Cuantificadores |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
The algebraic category MV•is the image of MV, the category whose objects are the MV-algebras, by theequivalenceK•(cf. [7, 8]). In this paper we define the logic Ł•whose Lindenbaum algebra is an MV•-algebra(object of MV•), and establish a link between Ł•and the infinite valued Łukasiewicz logic Ł. We definecU-operators, that have properties of universal quantifiers, and establish a bijection that maps an MV-algebraendowed with a U-operator (cf. [20–22]) into an MV•-algebra endowed with acU-operator. This map extendsto a functor that is a categorical equivalence. Fil: Sagastume, Marta Susana. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matemáticas; Argentina Fil: San Martín, Hernán Javier. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matemáticas; Argentina |
description |
The algebraic category MV•is the image of MV, the category whose objects are the MV-algebras, by theequivalenceK•(cf. [7, 8]). In this paper we define the logic Ł•whose Lindenbaum algebra is an MV•-algebra(object of MV•), and establish a link between Ł•and the infinite valued Łukasiewicz logic Ł. We definecU-operators, that have properties of universal quantifiers, and establish a bijection that maps an MV-algebraendowed with a U-operator (cf. [20–22]) into an MV•-algebra endowed with acU-operator. This map extendsto a functor that is a categorical equivalence. |
publishDate |
2014 |
dc.date.none.fl_str_mv |
2014-10 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/32869 Sagastume, Marta Susana; San Martín, Hernán Javier; The logic Ł•; Wiley VCH Verlag; Mathematical Logic Quarterly; 60; 6; 10-2014; 375-388 0942-5616 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/32869 |
identifier_str_mv |
Sagastume, Marta Susana; San Martín, Hernán Javier; The logic Ł•; Wiley VCH Verlag; Mathematical Logic Quarterly; 60; 6; 10-2014; 375-388 0942-5616 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1002/malq.201200105 info:eu-repo/semantics/altIdentifier/url/http://onlinelibrary.wiley.com/doi/10.1002/malq.201200105/abstract |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Wiley VCH Verlag |
publisher.none.fl_str_mv |
Wiley VCH Verlag |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844612991072337920 |
score |
13.070432 |