Geometry of Robinson consistency in Łukasiewicz logic
- Autores
- Busaniche, Manuela; Mundici, Daniele
- Año de publicación
- 2007
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We establish the Robinson joint consistency theorem for the infinite-valued propositional logic of Łukasiewicz. As a corollary we easily obtain the amalgamation property for MV-algebras-the algebras of Łukasiewicz logic: all pre-existing proofs of this latter result make essential use of the Pierce amalgamation theorem for abelian lattice-ordered groups (with strong unit) together with the categorical equivalence Γ between these groups and MV-algebras. Our main tools are elementary and geometric.
Fil: Busaniche, Manuela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina
Fil: Mundici, Daniele. Università degli Studi di Firenze; Italia - Materia
-
ŁUkasiewicz&Nbsp;Logic
Amalgamation
Finite-Valued Logic
Free Mv-Algebra
Infinite-Valued Logic
Krull Depth
Mcnaughton Function
Mv-Algebra
Prime Ideal
Robinson Joint Consistency
Unimodular Triangulation - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/84081
Ver los metadatos del registro completo
id |
CONICETDig_49a2de2e3dffced96ac09e6dff4484ff |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/84081 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Geometry of Robinson consistency in Łukasiewicz logicBusaniche, ManuelaMundici, DanieleŁUkasiewicz&Nbsp;LogicAmalgamationFinite-Valued LogicFree Mv-AlgebraInfinite-Valued LogicKrull DepthMcnaughton FunctionMv-AlgebraPrime IdealRobinson Joint ConsistencyUnimodular Triangulationhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We establish the Robinson joint consistency theorem for the infinite-valued propositional logic of Łukasiewicz. As a corollary we easily obtain the amalgamation property for MV-algebras-the algebras of Łukasiewicz logic: all pre-existing proofs of this latter result make essential use of the Pierce amalgamation theorem for abelian lattice-ordered groups (with strong unit) together with the categorical equivalence Γ between these groups and MV-algebras. Our main tools are elementary and geometric.Fil: Busaniche, Manuela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; ArgentinaFil: Mundici, Daniele. Università degli Studi di Firenze; ItaliaElsevier Science2007-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/84081Busaniche, Manuela; Mundici, Daniele; Geometry of Robinson consistency in Łukasiewicz logic; Elsevier Science; Annals Of Pure And Applied Logic; 147; 1-2; 6-2007; 1-220168-0072CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.apal.2006.11.003info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:53:44Zoai:ri.conicet.gov.ar:11336/84081instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:53:44.63CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Geometry of Robinson consistency in Łukasiewicz logic |
title |
Geometry of Robinson consistency in Łukasiewicz logic |
spellingShingle |
Geometry of Robinson consistency in Łukasiewicz logic Busaniche, Manuela ŁUkasiewicz&Nbsp;Logic Amalgamation Finite-Valued Logic Free Mv-Algebra Infinite-Valued Logic Krull Depth Mcnaughton Function Mv-Algebra Prime Ideal Robinson Joint Consistency Unimodular Triangulation |
title_short |
Geometry of Robinson consistency in Łukasiewicz logic |
title_full |
Geometry of Robinson consistency in Łukasiewicz logic |
title_fullStr |
Geometry of Robinson consistency in Łukasiewicz logic |
title_full_unstemmed |
Geometry of Robinson consistency in Łukasiewicz logic |
title_sort |
Geometry of Robinson consistency in Łukasiewicz logic |
dc.creator.none.fl_str_mv |
Busaniche, Manuela Mundici, Daniele |
author |
Busaniche, Manuela |
author_facet |
Busaniche, Manuela Mundici, Daniele |
author_role |
author |
author2 |
Mundici, Daniele |
author2_role |
author |
dc.subject.none.fl_str_mv |
ŁUkasiewicz&Nbsp;Logic Amalgamation Finite-Valued Logic Free Mv-Algebra Infinite-Valued Logic Krull Depth Mcnaughton Function Mv-Algebra Prime Ideal Robinson Joint Consistency Unimodular Triangulation |
topic |
ŁUkasiewicz&Nbsp;Logic Amalgamation Finite-Valued Logic Free Mv-Algebra Infinite-Valued Logic Krull Depth Mcnaughton Function Mv-Algebra Prime Ideal Robinson Joint Consistency Unimodular Triangulation |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We establish the Robinson joint consistency theorem for the infinite-valued propositional logic of Łukasiewicz. As a corollary we easily obtain the amalgamation property for MV-algebras-the algebras of Łukasiewicz logic: all pre-existing proofs of this latter result make essential use of the Pierce amalgamation theorem for abelian lattice-ordered groups (with strong unit) together with the categorical equivalence Γ between these groups and MV-algebras. Our main tools are elementary and geometric. Fil: Busaniche, Manuela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina Fil: Mundici, Daniele. Università degli Studi di Firenze; Italia |
description |
We establish the Robinson joint consistency theorem for the infinite-valued propositional logic of Łukasiewicz. As a corollary we easily obtain the amalgamation property for MV-algebras-the algebras of Łukasiewicz logic: all pre-existing proofs of this latter result make essential use of the Pierce amalgamation theorem for abelian lattice-ordered groups (with strong unit) together with the categorical equivalence Γ between these groups and MV-algebras. Our main tools are elementary and geometric. |
publishDate |
2007 |
dc.date.none.fl_str_mv |
2007-06 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/84081 Busaniche, Manuela; Mundici, Daniele; Geometry of Robinson consistency in Łukasiewicz logic; Elsevier Science; Annals Of Pure And Applied Logic; 147; 1-2; 6-2007; 1-22 0168-0072 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/84081 |
identifier_str_mv |
Busaniche, Manuela; Mundici, Daniele; Geometry of Robinson consistency in Łukasiewicz logic; Elsevier Science; Annals Of Pure And Applied Logic; 147; 1-2; 6-2007; 1-22 0168-0072 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.apal.2006.11.003 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier Science |
publisher.none.fl_str_mv |
Elsevier Science |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613638063652864 |
score |
13.070432 |